Gold Coating on Copper-Ceria Catalysts for Preferential CO Oxidation Process in Rich Hydrogen Stream

Document Type : Research Article


Faculty of Chemical Engineering, University of Tehran, Tehran, I.R. Iran


Iran is rich in gas resources, which is the most important source of hydrogen production. Purification of produced hydrogen is required for use in various processes. One of the applications of hydrogen in fuel cells is that the need for hydrogen purification and carbon monoxide concentration is as low as 10 ppm. This is due to the carbon monoxide poisoning of the fuel cell anode. The use of nanocatalysts, especially gold nanocatalysts, for hydrogen purification in processes is of particular importance. In this study, oxidation of carbon monoxide in the presence of rich hydrogen stream was investigated by coating gold nanoparticles, which had a significant effect on the rate of conversion of CO. In this work, FESEM, BET, XRD, TPR analyzes were used for characterization and FT-IR for catalytic performance testing for the preferential carbon monoxide oxidation process. Catalytic activity test result for synthesized catalysts: CeO2 < Cu5% IMP-CeO2 < Au-CeO2 < Au-Cu5% IMP-CeO2 indicating synergistic effect of gold and copper for preferential oxidation of carbon monoxide.


Main Subjects

[1] Stambouli A.B., Fuel Cells: The Expectations for an Environmental-Friendly and Sustainable Source of Energy, Renewable and Sustainable Energy Reviews, 15(9): 4507-4520 (2011).
[2] Panwar N., Kaushik S., Kothari S., Role of Renewable Energy Sources in Environmental Protection: A Review, Renewable and Sustainable Energy Reviews, 15(3): 1513-1524 (2011).
[3] Mishra A. Prasad R., Preferential Oxidation of CO in Hydrogen Rich Gases: A Catalytic Aspect. LAP LAMBERT Academic Publishing, (2014).
[4] Brunekreef B., Holgate S.T., Air Pollution and Health, The Lancet, 360(9341): 1233-1242 (2002).
[5] Dicks A.L., Rand D.A.J., "Fuel Cell Systems Explained", Wiley Online Library, (2018).
[6] Cacciola G., Antonucci V., Freni S., Technology up Date and New Strategies on Fuel Cells, Journal of power sources, 100(1-2): 67-79 (2001).
[8] Dunn S., Hydrogen Futures: Toward a Sustainable Energy System, 27(3): 235-264 (2002).
[9] Krishna R., Titus E., Salimian M., Okhay O., Rajendran S.,  Rajkumar A., Sousa J.M.G., Ferreira A.L.C., Campos Gil J., Gracio J., "Hydrogen Storage for Energy Application", Hydrogen storage, IntechOpen, (2012).
[13] Zhu P., Li J., Huang Q., Yan S., Liu M., Zhou R., High Performance CuO-CeO2 Catalysts for Selective Oxidation of CO in Excess Hydrogen: Effect of Hydrothermal Preparation Conditions, Journal of Natural Gas Chemistry, 18(3): 346-353 (2009).
[14] Liu Y., Fu Q., Stephanopoulos M., Preferential Oxidation of CO in H2 over CuO-CeO2 Catalysts, Catalysis Today, 93: 241-246 (2004).
[15] Barbir F., "PEM Fuel Cells", Fuel Cell Technology, Springer, 27-51 )2006).
[16] Staffell I. et al., The Role of Hydrogen and Fuel Cells in the Global Energy System, Energy & Environmental Science, 12: 463-491 (2019).
[17] Ahmed S., Krumpelt M., Hydrogen from Hydrocarbon Fuels for Fuel Cells, International journal of hydrogen energy, 26(4): 291-301 (2001).
[18] Iulianelli A., Ribeirinha P., Mendes A., Basile A., Methanol Steam Reforming for Hydrogen Generation via Conventional and Membrane Reactors: A Review, Renewable and Sustainable Energy Reviews, 29: 355-368 (2014).
[19] Oh S.H., Sinkevitch R.M., Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation, Journal of Catalysis, 142(1): 254-262 (1993).
[20] Ilieva L., et al., Alumina Supported Au/Y-doped Ceria Catalysts for Pure Hydrogen Production via PROX, international journal of hydrogen energy, 44(1): 233-245) 2019).
[22] Martínez-Arias A., et al., Redox-Catalytic Correlations in Oxidised Copper-Ceria CO-PROX Catalysts, Catalysis Today, 143(3-4): 211-217 (2009).
[23] Nguyen T.-S., Morfin F., Aouine M., Bosselet F., Rousset J.-L., Piccolo L., Trends in the CO Oxidation and PROX Performances of the Platinum-Group Metals Supported on Ceria, Catalysis Today, 253: 106-114 (2015).
[24] Mariño F., Descorme C., Duprez D., Noble Metal Catalysts for the Preferential Oxidation of Carbon Monoxide in the Presence of Hydrogen (PROX), Applied Catalysis B: Environmental, 54(1): 59-66, (2004).
[26] Védrine J. C. J. A. C. A. G., “Heterogeneous Catalytic Oxidation, Fundamental and Technological Aspects of the Selective and Total Oxidation of Organic Compounds-BK Hodnett”, John Wiley & Sons Ltd., Chichester, UK, 209(1-2): 429 )2001(.
[27] Moreno M., Baronetti G.T., Laborde M.A., F. J. J. I. J. o. H. E. Mariño, Kinetics of Preferential CO oxidation in H2 Excess (COPROX) over CuO/CeO2 Catalysts, 33(13): 3538-3542, 2008.
[29] Gawade P., Bayram B., Alexander A.-M. C., Ozkan U. S., Preferential Oxidation of CO (PROX) over CoOx/CeO2 in Hydrogen-Rich Streams: Effect of Cobalt Loading, Applied Catalysis B: Environmental, 128:  21-30 (2012).
[30] Konsolakis M., The Role of Copper–Ceria Interactions in Catalysis Science: Recent Theoretical and Experimental Advances, Applied Catalysis B: Environmental, 198: 49-66 (2016).
[31] Maciel C.G., de Freitas Silva T., Hirooka M. I., Belgacem M.N., Assaf J. M. J. F., Effect of Nature Of Ceria Support in CuO/CeO2 Catalyst for PROX-CO reaction, 97: 245-252 (2012).
[32] Jia A.-P., Jiang S.-Y., Lu J.-Q., Luo M.-F. J. T. J. o. P. C. C., Study of Catalytic Activity at the CuO− CeO2 Interface for CO Oxidation, 114(49): 21605-21610 (2010).
[34] Liu Z., Wu Z., Peng X., Binder A., Chai S., Dai S. J. T. J. o. P. C. C., Origin of Active Oxygen in a Ternary CuOx/Co3O4–CeO2 Catalyst for CO Oxidation, 118(48): 27870-27877 (2014).
[37] de Oliveira Jardim E., Rico-Francés S., Coloma F., Ramos-Fernández E.V., Silvestre-Albero J., Sepúlveda-Escribano A. J. A. C. A. G., Superior Performance of Gold Supported on Doped CeO2 Catalysts for the Preferential CO Oxidation (PROX), 487 :119-129 )2014.(
[38] Hernández J.A., Gómez S.A., Zepeda T., Fierro-González J.C., Fuentes G. A. J. A. C., Insight into the Deactivation of Au/CeO2 Catalysts Studied by in-Situ Spectroscopy During the CO-PROX Reaction, 5)7): 4003-4012 (2015).
[39] Qiu Z., Guo X., Mao J., Zhou R. J. A. S. S., The Catalytic Performance of Isolated-Dispersed Au on Nanosized CeO2 for CO Preferential Oxidation in H2-Rich Stream, Applied Surface Science, 481: 1072-1079 (2019).
[41] Yi G., Yang H., Li B., Lin H., Tanaka K.-i., Yuan Y.J.C.T., Preferential CO Oxidation in a H2-Rich Gas by Au/CeO2 Catalysts: Nanoscale CeO2 Shape Effect and Mechanism Aspect, 157(1-4): 83-88, (2010).
[42] Wang F., Li H.,  Shen W. J. C. t., Influence of Au Particle Size on Au/CeO2 Catalysts for CO Oxidation, Catalysis Today, 175(1): 541-545 (2011).
[43] Luengnaruemitchai A., Pojanavaraphan C., Kumyam A., Thunyaratchatanon C., Gulari E.J.I.J.o.H.E., Hydrogen Production from the Oxidative Steam Reforming of Methanol over AuCu Nanoparticles Supported on Ce1-xZrxO2 in a Fixed-Bed Reactor, 44(3): 1686-1700 (2019).
[45] Taniguchi T., et al., Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy, 113(46): 19789-19793 (2009).
[46] Phokha S., Pinitsoontorn S., Chirawatkul P., Poo-Arporn Y., Maensiri S., Synthesis, Characterization, and Magnetic Properties of Monodisperse CeO2 Nanospheres Prepared by PVP-Assisted Hydrothermal Method, 7(1): 425 (2012).
[47] Guo M., J. Lu, Y. Wu, Y. Wang, and M. J. L. Luo, UV and Visible Raman Studies of Oxygen Vacancies in Rare-Earth-Doped Ceria, 27(7): 3872-3877 (2011).
[49] Gamboa-Rosales N., Ayastuy J., Gonzalez-Marcos M., Gutierrez-Ortiz M. J. I. J. O. H. E., Oxygen-Enhanced Water Gas Shift Over Ceria-Supported Au–Cu Bimetallic Catalysts Prepared by Wet Impregnation and Deposition–Precipitation, 37(8): 7005-7016, 2012.
[50] X. Liao, W. Chu, X. Dai, V. J. A. C. B. E. Pitchon, Bimetallic Au–Cu Supported on Ceria for PROX Reaction: Effects of Cu/Au Atomic Ratios and Thermal Pretreatments, 142: 25-37, 2013.
[51] A. M. Abdel-Mageed, B. Rungtaweevoranit, M. Parlinska-Wojtan, X. Pei, O. M. Yaghi, and R. J. r. J. J. o. t. A. C. S. Behm, Highly Active and Stable Single-Atom Cu Catalysts Supported by a Metal–Organic Framework, 141)13): 5201-5210, 2019.
[52] L. A. Calzada, S. E. Collins, C. W. Han, V. Ortalan, and R. J. A. C. B. E. Zanella, Synergetic Effect of Bimetallic Au-Ru/Tio2 Catalysts for Complete Oxidation of Methanol, 207: 79-92, 2017.
[53] R. Fiorenza, C. Crisafulli, and S. J. i. j. o. h. e. Scire, H2 Purification Through Preferential Oxidation of CO Over Ceria Supported Bimetallic Au-Based Catalysts, 41(42): 19390-19398, (2016).