Influence Applied Voltage and Gap Distance on the Morphology of PCL/KIT-6 Electrospun Composite Scaffolds

Document Type : Research Article

Authors

1 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, I.R. IRAN

2 Biomaterial Department of Iran Polymer and Petrochemical Institute, Tehran, I.R. IRAN

3 National Institute of Genetic Engineering and Biotechnology, Tehran, I.R. IRAN

Abstract

One of the significant challenges in synthesis  of electrospun scaffolds is the fabrication of highly porous scaffolds free from defects and beads,with uniform fibers. In this study, effects of applied voltage and distance on morphologies of electrospun pcl-KIT-6 composite scaffolds were investigated.Fibre morphology was observed under a scanning electron microscopy. The effects of operating parameters including applied voltage, and tip-target distance on the morphology of electrospun  pcl-KIT-6 composite scaffolds  were systematically evaluated. Results showed that The morphological structure can be changed by changing the applied voltage and distance.when the voltage was increased from 15to 18 kv, nanofibres with beades were observed. Furthermore, increasing distance from 15 to 20cm had a positive effect on the scaffolds' morphology and decreased the defects such as beads in the structure. Hence the optimum conditions for electrospinning the PCL/KIT-6 composite scaffolds were determined for voltage and distance in 15kv and 20cm.

Keywords

Main Subjects


[1] Salgado A.J., Coutinho O.P., Reis R.L., Bone Tissue Engineering: State of the Art and Future Trends. Macromolecular bioscience, 4(8): 743-65 (2004).
[2] Bell E., Tissue Engineering, An Overview. Tissue engineering, Springer, 3-15 (1993).
[3] Lim S.H., Mao H.-Q., Electrospun Scaffolds for Stem Cell Engineering. Advanced Drug Delivery Reviews, 61(12): 1084-96 (2009).
[4] O'Keefe R.J., Mao J., Bone Tissue Engineering and Regeneration: from Discovery to the Clinic—an Overview. Tissue Engineering Part B: Reviews, 17(6): 389-92 (2011).
[5] Dutta R.C., Dutta A.K., Comprehension of ECM-Cell Dynamics: A Prerequisite for Tissue Regeneration. Biotechnology advances, 28(60): 764-769 (2010).
[6] Ikada Y., Challenges in Tissue Engineering. Journal of the Royal Society Interface, 3(10): 589-601 (2006).
[7] Gniesmer S., Brehm R., Hoffmann A., de Cassan D., Menzel H., Hoheisel A.L., et al., Vascularization and Biocompatibility of Poly [Ε-Caprolactone ] Fiber Mats for Rotator Cuff Tear Repair. PLOS ONE, 15(1): e0227563 (2020).
[8] Okada M., Chemical syntheses of biodegradable polymers. Progress in polymer science, 27(1): 87-133 (2002).
[9] Roy I., Biodegradable Polymers. Journal of Chemical Technology & Biotechnology, 85(6): 731- (2010).
[10] Diba M., Kharaziha M., Fathi M., Gholipourmalekabadi M., Samadikuchaksaraei A., Preparation and Characterization of Polycaprolactone/Forsterite Nanocomposite Porous Scaffolds Designed for Bone Tissue Regeneration. Composites Science and Technology, 72(6): 716-723 (2012).
[11] Kim H.W., Biomedical Nanocomposites of Hydroxyapatite/Polycaprolactone Obtained by Surfactant Mediation. Journal of Biomedical Materials Research Part A, 83(1): 169-177 (2007).
[12] Chitra K., Reena K., Manikandan A., Antony S.A., Antibacterial Studies and Effect of Poloxamer on Gold Nanoparticles by Zingiber Officinale Extracted Green Synthesis. Journal of nanoscience and nanotechnology, 15(7): 4984-4991 (2015).
[13] Huang X., Li L., Liu T., Hao N., Liu H., Chen D., et al., The Shape Effect of Mesoporous Silica Nanoparticles on Biodistribution, Clearance, and Biocompatibility in Vivo, ACS nano, 5(7): 5390-5399 (2011).
[14] Ayad M.M., Salahuddin N.A., El-Nasr A.A., Torad N.L., Amine-Functionalized Mesoporous Silica KIT-6 as a Controlled Release Drug Delivery Carrier. Microporous and Mesoporous Materials, 229: 166-177 (2019).
[15] Popova M., Trendafilova I., Tsacheva I., Mitova V., Kyulavska M., Koseva N., et al. Amino-Modified KIT-6 Mesoporous Silica/Polymer Composites for Quercetin Delivery: Experimental and Theoretical Approaches. Microporous and Mesoporous Materials, 270: 40-47 (2018).
[16] Janfada A., Asefnejad A., Khorasani M.T., Joupari M.D., Reinforcement of Electrospun Polycaprolacton Scaffold using KIT-6 to Improve Mechanical and Biological Performance. Polymer Testing, 84: 106391 (2020).
[17] Mo X., Li D., EI-Hamshary H.A, .Al-Deyab S.S., Electrospun Nanofibers for Tissue Engineering. Journal of Fiber Bioengineering and Informatics, 6(3): 225-235 (2013).
[19] Zhmayev E., Cho D., Joo Y.L., Nanofibers from Gas-Assisted Polymer Melt Electrospinning. Polymer, 51(18): 4140-4144 (2015).
[20] مشهدی س.، مردانی تودشکی ح.، علی مرادی م.، استفاده از نانو الیاف پلیمری الکتروریسی آغشته به لیگاند جاذب برای تعیین مس در آب شهرستان اراک. نشریه شیمی و مهندسی شیمی ایران، (3)36: 103 تا 113 (1396).  
[21] Hekmati A.H., Rashidi A., Ghazisaeidi R., Drean J-Y., Effect of Needle Length, Electrospinning Distance, and Solution Concentration on Morphological Properties of Polyamide-6 Electrospun Nanowebs. Textile Research Journal, 83(14): 1452-1466 (2013).
[22] Zheng Y., Xie S., Zeng Y., Electric Field Distribution and Jet Motion in Electrospinning Process: from Needle to Hole. Journal of Materials Science, 48(19): 6647-55 (2013).
[23] Tan E., Ng S., Lim C., Tensile Testing of a Single Ultrafine Polymeric Fiber. Biomaterials, 26(13): 1453-6 (2005).
[24] Kharaziha M., Fathi M., Edris H., Development of Novel Aligned Nanofibrous Composite Membranes for Guided bone Regeneration. Journal of the mechanical behavior of biomedical materials, 24: 9-20 (2013).
[25] Siqueira L.d., Passador F.R., Lobo A.O., Trichês E.D.S., Morphological, Thermal and Bioactivity Evaluation of Electrospun PCL/β-TCP Fibers for Tissue Regeneration. Polímeros, 29(1): (2019).
[26] Rajzer I., Dziadek M., Kurowska A., Cholewa-Kowalska K., Ziąbka M., Menaszek E., et al. Electrospun Polycaprolactone Membranes with Zn-Doped Bioglass for Nasal Tissues Treatment. Journal of Materials Science: Materials in Medicine, 30(7): 1-11 (2019).
[27] Fujihara K., Kotaki M., Ramakrishna S., Guided bone Regeneration Membrane Made of Polycaprolactone/Calcium Carbonate Composite Nano-Fibers. Biomaterials, 26(19): 4139-4147 (2005).
[29] Yoshikawa H., Myoui A., Bone Tissue Engineering with Porous Hydroxyapatite Ceramics. Journal of Artificial Organs, 8(3): 131-136 (2005).
[30] فرخ‌زاده م.، کورکی ه.، مروری بر برق‌ریسی و کنترل ریزساختار مش‌های بی‌بافت و کاربردهای آن. علوم و فناوری نساجی (1)7: 47 تا 61 (1397).
[31] مپیشین م.، گودرزنیا آ.، بررسی اثر دما، رطوبت و نانوذره سیلیس بر ریخت شناسی و تخلخل سطحی الیاف پلی استایرن الکتروریسی شده. نشریه شیمی و مهندسی شیمی ایران، (1)38: 79 تا 87 (1398).
[32] Yener, Fatma, Jirsak O, Gemci R. Using A Range of PVB Spinning Solution to Acquire Diverse Morphology for Electrospun Nanofibres. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 31(4): 49-58 (2012).
[33] فرخ‌زاده م.، کورکی ه.، بررسی ریز ساختار داربست زیستی متشکل از نانوالیاف پلی‌وینیل الکل از داده‌های کلی. نشریه شیمی و مهندسی شیمی ایران، (3)40: 49 تا 59 (1400).
[34] Amith V., Sridhar R., Angadi G., H.N. N.M., A Comprehensive Review Summarizing the Effect of Electrospinning Parameters and Potential Applications of Nanofibers. Journal of Nanoscience Nanoengineering and Applications, 9(3): 1-6 (2019).
[36] Rabionet M., Yeste M., Puig T., Ciurana J., Electrospinning PCL Scaffolds Manufacture for Three-Dimensional Breast Cancer Cell Culture. Polymers, 9(8): 328 (2017).
[37] Katsogiannis K.A.G., Vladisavljević G.T., Georgiadou S. Porous Electrospun Polycaprolactone [PCL] Fibres by Phase Separation. European Polymer Journal, 69: 284-295 (2015).
[38] Deitzel J.M., Kleinmeyer J., Harris D., Tan N.B., The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles. Polymer, 42(1): 261-272 (2001).
[39] Almasi D., Abbasi K., Sultana N., Lau W.J., Study on TiO2 Nanoparticles Distribution in Electrospun Polysulfone/TiO2 Composite Nanofiber. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(2): 49-53 (2017).