Experimental Investigation of the Effect of Zinc Oxide Nanoparticles and Process Parameters on Thermal Performance of Flat Plate Solar Collector

Document Type : Research Article


Department of Chemical Engineering, Faculty of Engineering, Quchan University of Technology, Quchan, I.R. IRAN


Solar energy is the most appropriate choice for human energy supplying. Because of, its renewable and No risk of environmental pollution. of course, there are problems to convert this form of energy into the others such as low thermal efficiency and how converting it. Flat plate solar collector is one of the most important solar thermal energy absorbers for industrial and household applications. In this research, we investigated the thermal performance of a flat plate solar collector using zinc oxide nanoparticles in water based fluid + ethylene glycol as the operating fluid. The purpose of this study was to improve the thermal performance and how to increase the thermal efficiency of flat plate solar collectors. Initially, experiments were performed in the presence of working fluid 65% water + 35% ethylene glycol without nanoparticles zinc oxide and thermal efficiency was obtained. Then thermal efficiency of solar collector was investigated in the presence of 0.05% and 0.1% volumetric zinc nanoparticles in the flow rate range 1–5 liters per minute. The effect of the nanoparticles and their concentration on the thermal performance of the solar collector were investigated by determining the amount of heat absorbed in the presence of nanofluid relative to the pure base fluid. The use of zinc oxide nanoparticles at 0.05% and 0.1% volumetric fraction resulted in a 4-20% increase in average thermal efficiency and 8-33% in maximum efficiency of flat plate solar collector. Although in nanofluids with higher volumes, about 5-7% was added to the average thermal efficiency of the solar collector, it also increased the sedimentation rate of the nanoparticles in the base fluid.


Main Subjects

[1] Muhammad M.J., Muhammad I.A., Che Sidik N.A., Yazid M.N.A.W.M., Thermal Performance Enhancement of Flat-Plate and Evacuated Tubesolar Collectors Using Nanofluid: A Review, International Communications in Heat and Mass Transfer, 76: 6–15 (2016).
[2] Gupta H.K., Agrawal G.D., Mathur J., An Experimental Investigation of a Low Temperature Al2O3-H2O Nanofluid Based Direct Absorption Solar Collector, Solar Energy, 118: 390- 396 (2015).
[3] Liu J., Ye Z., Zhang L., Fang X., Zhang Z., A Combined Numerical and Experimental Study on Graphene/Ionic Liquid Nanofluid Based Direct Absorption Solar Collector, Solar Energy Materials and Solar Cells, 136: 177-186 (2015).
[4] Yan S., Wang F., Shi Z.G., Tian R., Heat Transfer Property of SiO2/water Nanofluid Flow inside Solar Collector Vacuum Tubes, Applied Thermal Engineering, 152: 119496 (2020).
[5] Yurddas A., Optimization and Thermal Performance of Evacuated Tube Solar Collector with Various Nanofluids, International Journal of Heat and Mass Transfer, 118: 385-391 (2017).
[6] Choudhary S., Sachdeva A., Kumar P., Investigation of the Stability of MgO Nanofluid and its Effect on the Thermal Performance of Flat Plate Solar Collector, Renewable Energy, 147: 1801-1814 (2020).
[7] Choudhary S., Sachdeva A., Kumar P., Influence of Stable Zinc Oxide Nanofluid on Thermal Characteristics of Flat Plate Solar Collector, Renewable Energy, 152: 1160-1170 (2020).
[8] Tong Y., Lee H., Kang W., Cho H., Energy and Exergy Comparison of a Flat-Plate Solar Collector using Water, Al2O3 Nanofluid, and CuO Nanofluid, Applied Thermal Engineering, 159: 113959 (2019).
[9] Mercan M., Yurddaş A., Numerical Analysis of Evacuated Tube Solar Collectors using Nanofluids, Solar Energy, 191: 167-179 (2019).
[10] Shafiey Dehaj M., Zamani Mohiabadi M., Experimental Investigation of Heat Pipe Solar Collector Using MgO Nanofluids, Solar Energy Materials and Solar Cells, 191: 91-99 (2019).
[11] Shahram Delfania, Mostafa Esmaeili, Maryam Karami, Application of Artificial Neural Network for Performance Prediction of a Nanofluid-Based Direct Absorption Solar Collector, Sustainable Energy Technologies and Assessments, 36: 100559 (2019)
[12] Hawwash A.A., Abdel Rahman A.K., Nada S.A., Ookawara S., Numerical Investigation and Experimental Verification of Performance Enhancement of Flat Plate Solar Collector Using Nanofluids, Therm. Eng., 130: 363–374 (2018)
[14] Xuan Y., Roetzel W., Conceptions for Heat Transfer Correlation of Nanofluids, J. Heat Mass Transf. 43: 3701–3707 (2000).
[16] کرمی م.، اخوان بهابادی م.ع.، دلفانی ش.، حسینی پاکدل س.م.، کاربرد نانوسیال ترکیبی Fe3O4/Silica به عنوان سیال عامل کلکتور خورشیدی جذب مستقیم، مجله مکانیک دانشگاه تربیت مدرس، (2)18: 37-44 (1397).
[17] مروج م.، نقره آبادی ا.ر.، حاجی دولو ا.، بررسی تجربی کارایی کلکتورهای سه بعدی ثابت و صفحه تخت خورشیدی،دوفصلنامه انرژی‌های تجدید پذیر و نو، (1)5: 20-29 (1397).
[18] کاظمی ج.، اسدزاده زرگر ف.، اسدزاده زرگر ا.، بررسی پارامترهای تأثیرگذار بر بازده گرمایی کلکتورهای خورشیدی صفحه تخت، دوفصلنامه انرژی‌های تجدید پذیر و نو، (1)5: 1-8 (1397).
[19] کیانی ایرانپور ع.، کرمی م.، دلفانی ش.، بررسی عددی تأثیر پارامترهای موثر بر روی کارایی کلکتور خورشیدی حجمی با استفاده از نانوسیال آب-اکسید مس، مجله مکانیک سازه‌ها و شاره‌ها، (1)7: 91-100 (1396).