Chemical Vapor Deposition of Ruthenium Nano Layer on Co/Al2O3 Catalyst for Fischer-Tropsch Synthesis Using Ru3(CO)12 Precursor

Document Type : Research Article

Authors

Catalysis and Nanostructured Materials Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155-5463 Tehran, I.R. IRAN

Abstract

In present investigation, ruthenium was deposited on cobalt supported alumina catalyst by Chemical Vapor Deposition (CVD) of Ru3(CO)12 for Fischer-Tropsch Synthesis (FTS). The 15.0 wt% Co/γ-Al2O3 catalyst was prepared by wet impregnation of cobalt nitrate aqueous solution, and then dried and calcined at 400oC for 4 h. To optimize the CVD operating conditions in which Ru3(CO)12 starts to decompose on surface of the catalyst, the decomposition products of the CVD processwere passed through a gas cell of FT-IR. In a specific temperature range, ruthenium deposited selectively on the surface of cobalt active phase.The CVD of ruthenium onto Co/γ-Al2O3 catalyst increased the catalyst reducibility which in turnled to a higher CO hydrogenation activity in FTS process. Furthermore, the promoted cobalt catalyst showed a better selectivity towards heavy hydrocarbons than the reference unpromoted catalyst. The effects of temperature (210oC-240oC) and H2/CO ratio (1-3) for all catalysts were examined. For the all operating conditions, the promoted catalyst performed much better than the unpromoted catalyst.

Keywords

Main Subjects


[1] Dry M E, The Fischer-Tropsch Process 1950-2000, Catalysis Today, 71, p. 227 (2002).
[2] Arne Dinse, Max Aigner, Markus Ulbrich, Effects of Mn Promotion on the Activity and Selectivity of Co/SiO2 for Fischer-Tropsch Synthesis, Journal of Catalysis, 288, p. 104 (2012).
[3] Li S Z, Krishnamoorthy S, Li AW, Meitzner AW, Iglesia E, Promoted Iron-Based Catalysts for the Fischer-Tropsch Synthesis: Design, Synthesis, Site Densities, and Catalytic Properties, Journal of Catalysis, 206, p. 202 (2002).
[4] Chengchao Liu, Jinlin Li, Yuhua Zhang, Sufang Chen, Junjiang Zhu, Kongyong Liew, Fischer-Tropsch Synthesis Over Cobalt Catalysts Supported on Nanostructured Alumina with Various Morphologies, Journal of Molecular Catalysis A:Chemical, 363–364, p. 335 (2012).
[5] Ali Karimi, Ali Nakhaei Pour, Farshad Torabi, Behnam Hatami, Ahmad Tavasoli, Mohammad Reza Alaei, Mohammad Irani, Fischer-Tropsch Synthesis over Ruthenium-Promoted Co/Al2O3 Catalyst with Different Reduction Procedures, Journal of Natural Gas Chemistry, 19, p. 503 (2010).
[6] Jacobs G, Das T K, Zhang Y Q, Li J L, Racoillet G, Davis B H, Fischer-Tropsch Synthesis: Support, Loading, and Promoter Effects on the Reducibility of Cobalt Catalysts, Applied Catalysis A Gen, 233, p. 263 (2002).
[7] Hosseini S A, Taeb A, Feyzi F, Yaripour, F. Fischer–Tropsch Synthesis over Ru Promoted Co/γ-Al2O3 Catalysts in a CSTR, Catalysis Communication, 5, p. 137 (2004).
[8] Zhang J.L, Chen J.G, Ren J., Sun Y.H, Chemical Treatment of γ-Al2O3 and Its Influence on the Properties of Co-Based Catalysts for Fischer-Tropsch Synthesis, Applied Catalysis A Gen, 243, p. 121 (2003).
[9] Sang-Hoon Song, Sang-Bong Lee, Jong Wook Bae, P.S. Sai Prasad, Ki-Won Jun, Influence of Ru Segregation on the Activity of Ru–Co/γ-Al2O3 During FT Synthesis: A Comparison with That of Ru–Co/SiO2 Catalysts, Catalysis Communications, 9, p. 2282 (2008).
[10] غلامرضا مرادی، محمد مهبد بصیر و عباس طائب، تاثیر زیرکونیم روی مشخصات فیزیکی وعملکرد کاتالیست کبالت در سنتز فیشر- تروپش، نشریه شیمی و مهندسی شیمی ایران، (2)22, (1382).
[11] Li Ch, Sun Q, Cao F, Ying W, Fang D, Pretreatment of Alumina and Its Influence on the Properties of Co/Alumina Catalysts for Fischer-Tropsch Synthesis, Journal of Natural Gas Chemistry, 16, p. 308 (2007).
[12] Shreyas Rane, Øyvind Borg, Jia Yang, Erling Rytter, Anders Holmen, Effect of Alumina Pphases on Hydrocarbon Selectivity in Fischer-Tropsch Synthesis, Applied Catalysis A: General, 388, p. 160 (2010).
[13] Khodakov A Y, Chu W, Fongarland P. Advances in the Development of Novel Cobalt Fischer−Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels, Chem Rev 107(2007)1692-1744. 
[14] Tsubaki N., Sun S., Fujimoto K., Different Functions of the Noble Metals Added to Cobalt Catalysts for Fischer–Tropsch Synthesis, Journal of Catalysis 199, p. 236 (2001).
[15] Seon-Ju Park, Jong Wook Bae, Yun-Jo Lee, Kyoung-Su Ha, Ki-Won Jun, Prashant Karandikar, Deactivation Behaviors of Pt or Ru Promoted Co/P-Al2O3 Catalysts During Slurry-Phase Fischer-Tropsch Synthesis, Catalysis Communications 12, p. 539 (2011).
[16] Wenping Ma, Gary Jacobs, Robert A. Keogh, Dragomir B. Bukur, Burtron H. Davis, Fischer-Tropsch Synthesis: Effect of Pd, Pt, Re, and Ru Noble Metal Promoters on the Activity and Selectivity of a 25%Co/Al2O3 Catalyst, Applied Catalysis A: General, 437-438, p. 1 (2012).
[17] Li J.L., Zhan X.D., Zhang Y., Jacobs G., Das T., Davis B.H., Fischer-Tropsch Synthesis: Effect of Water on the Deactivation of Pt Promoted Co/Al2O3 Catalysts, Applied Catalysis A: Gen, 228, p. 203 (2002).
[18] Jacobs G., Patterson P.M., Zhang Y., Das T., Li J.L., Davis B.H., Fischer-Tropsch Synthesis: Deactivation of Noble Metal-Promoted Co/Al2O3 Catalysts, Applied Catalysis A: Gen, 233, p. 215 (2002).
[19] Jones A.C., Hitchman M.L., "Chemical Vapour Deposition Precursors, Processes and Applications", Royal Society of Chemistry (2009).
[21] Smith K.C., Sun Y.M., Mettlach N.R., Hance R.L., White J.M., Evaluation of Precursors for Chemical Vapor Deposition of Ruthenium, Thin Solid Films, 376, p. 73 (2000).
[22] Cai T., Song Z., Chang Z., Liu G., Rodriguez J.A., Hrbek J., Ru Nanoclusters Prepared by Ru3(CO)12 Deposition on Au(111), Surface Science, 538, p. 76 (2003).
[23] Viguie J.C., Spitz J., Chemical Vapor Deposition at Low Temperatures, Journal of Electrochemical Society, 122, p. 585 )1975(.
[24] Rushworth S., Odedra R., Viswanathan P., Dosanjh S., Lealman I., Development and Characterisation of Improved Ruthenium Dopant Sources, Journal of Crystal Growth, 310, p. 4712 (2008).
[26] Trent D.E., Paris B., Krause H.H.,Vapor Deposition of Pure Ruthenium Metal from Ruthenocene, Inorganic Chemistry, 3, p. 1057 )1964(.
[27] Kelly M. Thom, J.G. Ekerdt, Surface Chemistry of (2,4-Dimethylpentadienyl) (Ethylcyclopentadienyl) Ru on Polycrystalline Ta, Surface Science, 603, p. 921 (2009).
[28] Reui-san Chen, Ying-sheng Huang, Yao-lun Chen , Yun Chi, Preparation and Characterization of RuO2 Thin Films from Ru(CO)2(tmhd)2 by Metalorganic Chemical Vapor Deposition, Thin Solid Films, 413, p. 85 (2002).
[29] Berry A.D., Brown D.J., Kaplan R., Cukauskas E.J., Ru and Os Film Deposition from Metal Carbonyls, Journal of Vacuum Science & Technology A, 4, p. 215(1986)
[31] Reuel R.C., Bartholomew C.H., The Stoichiometries of H2 and CO Adsorptions on Cobalt: Effects of Support and Preparation, Journal of Catalysis, 85, p. 63 (1984).
[32] Jones R.D., Bartholomew C.H., Improved Flow Technique for Measurement of Hydrogen Chemisorption on Metal Catalysts, Applied Catalysis, 39, p. 77 (1988).
[33] Jacobs G., Patterson P.M., Zhang Y., Das T., Li J., Davis B.H., Fischer-Tropsch Synthesis: Deactivation of Noble Metal-Promoted Co/Al2O3 Catalysts, Applied Catalysis A:General, 233, p. 215 (2004).
[34] Hosseini S.L., Taeb A., Feizi F., Yaripour F., Fischer-Tropsch Synthesis over Ru Promoted Co/γ-Al2O3 Catalysts in a CSTR, Catalysis Communication, 5, p. 137 (2004).
[35] Sang-Hoon Song, Sang-Bong Lee, Jong Wook Bae, P.S. Sai Prasad, Ki-Won Jun, Influence of Ru Segregation on the Activity of Ru–Co/γ-Al2O3 During FT Synthesis: A Comparison with that of Ru-Co/SiO2 Catalysts, Catalysis Communications, 9, p. 2282 (2008).
[36] Chengcheng Ma, Nan Yao, Qian Han, Xiaonian Li, Synthesis and Application of γ-Al2O3 Supported CoRu-Based Fischer-Tropsch Catalyst, Chemical  Engineering Journal, 191, p. 534 (2012).
[37] Farzad S., Haghtalab A., Rashidi A., Comprehensive Study of Nanostructured Supports with High Surface Area for Fischer-Tropsch Synthesis, Journal of Energy Chemistry, 22, p. 573 (2013).
[38] de la Osa A.R., De Lucas A., Romero A., Valverde J.L., Sánchez P., Performing the Best Composition of Supported Co/SiC Catalyst for Selective FTS Diesel Production, Fuel, 90, p. 1935 (2011).
[39] Bechara R., Balloy D., Vanhove D., Catalytic Properties of Co/Al2O3 System for Hydrocarbon Synthesis, Applied Catalysis A: General, 207, p. 343 (2001).
[40] Rohr F., Lindvag O.A., Holmen A., Blekkan E.A., Fischer-Tropsch Synthesis over Cobalt Catalysts Supported on Zirconia-Modified Alumina, Catalysis Today, 58, p. 247 (2000).
[41] Sølvi Storsæter, Bård Tøtdal, John C. Walmsley, Bjørn Steinar Tanem, Anders Holmen, Characterization of Alumina-, Silica-, and Titania-Supported Cobalt Fischer-Tropsch Catalysts, Journal of Catalysis, 236, p. 139 (2005).