Comparing Permeability, Contact Angle and Thermal Properties of Carboxymethyl Cellulose based Nanocomposite Containing Two Types of Nanofillers: Nanoclay and Cellulose Nanowhiskers

Document Type : Research Article


1 Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz I.R. IRAN

2 Faculty of Chemistry, University of Tabriz, Tabriz, I.R. IRAN


Carboxymethyl cellulose is a polysaccharide which forms strong and clear films. Montmorillonite and cellulose nanowhiskers are two types of nanoparticles with sheet and rod geometric shapes, respectively. Montmorillonite is nonrenewable and non biodegradable and cellulose nanowhiskers are renewable and biodegradable filler. Cellulose nanowhiskers are not produced commercially and in this research we prepared them from cotton linter. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) indicated that the prepared nonowhiskers suspernsion having an average length of 240 nm and diameter of 13 nm respectively. In this study, carboxymethyl cellulose (CMC)-Polyvinyl alcohol (PVA) nanocomposite films, containing 3-10% nanoparticles (W/W CMC), were prepared by casting method and their physical properties were compared. In comparison to control film, 28.21% reduction in Water Vapor Permeability (WVP) was observed in the films containing 10% Wt cellulose nonowhiskers and samples with 7% cellulose nanowhiskers, whowed the lowest surface hydrophilicity (contact angle = 59.28°). On the other hand, nanocomposite containing 10% montmorillonite exhibited 29.06% reduction in WVP compared to the control film samples with 10% montmorillonite, shwed the lowest surface hydrophilicity (contact angle = 65.09°). Significant difference in WVP value and contact angle of two types of nanocomposit only observed at 3 and 10% content of nanoparticles, respectively, by Duncan test (Pg) of the resulted nanocomposite films. The glass transition ddisappeared gradually and no glass transition was observed in the thermograms of the films containing higher amount of nanoparticles. Adding of nanoparticles caused to decrease in melting point of the both type of films.  


Main Subjects

[1] قنبرزاده، بابک؛ الماسی، هادی؛ زاهدی؛ یونس، "بیو پلیمرهای زیست تخریب پذیر و خوراکی در بسته بندی مواد غذایی و دارویی"، انتشارات دانشگاه امیر کبیر،( 1388) .
[2] جعفری نژاد، شهریار؛ ابوالقاسمی، حسین؛ احمدی، سیدجواد؛ قربانیان، سهرابعلی؛ ویژگی های مکانیکی نانوکامپوزیت­های پلی پروپیلن خاک رس تهیه شده با روش مخلوط مذاب، نشریه شیمی و مهندسی شیمی ایران، (2) 30، ص. 61 (1390).
[3] Sorrentino A., Gorrasi G., Vittoria V., Potential Perspectives of Bionanocomposites for Food Packaging Applications, Trends Food Sci. Tech., 18, p. 84 (2007).
[4] Whan J.R., Perry K.W., Natural Biopolymer-based Nanocomposite Films for Packaging Applications, Crit.Rev.Food Sci., 47, p. 411 (2007).
[5] Dalmas F., Chazeau L., Gauthier C., Cavaille´ J.Y., Dendievel R., Large Deformation Mechanical Behavior of Flexible Nanofiber Filled Polymer, Nanocomposites, Polymer., 47, p. 2802 (2006).
[6] Okamoto M., Biodegradable Polymer/Layered Silicate Nanocomposites: A Review, in:
Ed. Mallapragada, S. and Narasimhan, "Handbook of Biodegradable Polymeric Materials and Their Applications", American Science Publishers, B., pp. 1-45 (2005).
[7] Park H.M., Li X., Un C.Z., Park C.Y., Cho W.J., Ha C.S., Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids, Macromol. Mater. Eng., 287, p.553 (2002).
[8] Park H.M., Lee W.K., Park C.Y., Cho W.J., Ha C.S., Environmentally Friendly Polymer Hybrids. 1. Mechanical, Thermal, and Barrier Properties of Thermoplastic Starch/Clay Nanocomposites, J. Mater. Sci., 38, p. 909 (2003).
[9] Wilhelm H.M., Sierakowski M.R., Souza G.P., Wypych F., Starch Films Reinforced with Mineral Clay, Carbohyd. Polym., 52, p. 101 (2003).
[10] Huang M., Yu J., Structure and Properties of Thermoplastic corn Starch/Clay Nanocomposites, J. Appl. Polym. Sci., 99, p. 170 (2006).
[11] Mc Glashan S.A., Halley P.J., Preparation and Characterization of Biodegradable Starch-based Nanocomposite Materials, Polym. Int., 52, p. 1767 (2003).
[12] Xu Y., Zhou J., Hanna M.A., Melt-Intercalation Starch Acetate Nanocomposite Forms as Affected by Type of Organoclay, Cereal Chem., 82, p. 105 (2005).
[13] Park H.M., Misra M., Drzal L.T., Mohanty A.K., Green Nanocomposites from Cellulose Acetate Bioplastic and Clay: Effect of Ceo-Friendly Triethyl Citrate Plasticizer, Biomacromolecules., 5, p.2281(2004).
[14] Park H.M., Liang X., Mohanty A.K., Misra M., Drzal L.T., Effect of Compatibilizer on Nanostructure of the Biodegradable Cellulose Acetate/Organoclay Nanocomposites, Macromolecules., 37, p. 9076 (2004). 
[15] Romero R.B., Leite C.A.P., Gonçalves M.D.C., The Effect of the Solvent on the Morphology of Cellulose Acetate/Montmorillonite Nanocomposites, Polymer., 50, p. 161 (2009).
[16] Cho M.S., Choi S.H., Nam J.D., Lee Y., Preparation and Mechanical Properties of Nanocomposite of Cellulose Diacetate/Mentmorillonite, Polymer (Korea)., 28, p.551 (2004).
[17] Lin K.F., Hsu Ch.Y., Huang T.Sh., Chiu W.Y., Lee Y.H., A Novel Method to Prepare Chitosan/Montmorillonite Nanocomposites, J. Appl. Polym. Sci., 98, p. 2042 (2005).
[18] Xu Y., Ren X., Hanna M.A., Chitosan/Clay Nanocomposite Film Preparation and Characterization, J. Appl. Polym. Sci., 99, p. 1684 (2006).
[19] Lu Ch., Mai Y.W., Permeability Modeling of Polymer-Layered Silicate Nanocomposites, Compos. Sci. Technol., 67, p. 2895 (2007).
[20] Manias E., Origins of the Materials Properties Enhancements in Polymer/Clay Nanocomposites, Nanocomposites., 1, p. 1 (2001).
[21] Sinha-Ray,S., Pouliot S., Bousmina M., Utracki L.A., Role of Organically Modified Layered Silicate as an Active Interfacial Modifier in Immiscible Polystyrene/Polypropylene Blends, Polymer., 25, p. 8403 (2004).
[22] Gindl W., Keckes J., All-Cellulose Nanocomposite, Polymer., 46, p. 10221 (2005).
[23] Flieger M., Kantorova M., Prell A., Rezanka T., Votruba., Biodegradable Plastics from Rrenewable Sources, J., Folia microbiol., 48(1), p. 27 (2003).
[24] Oksman K., Mathew A.P., Bondeson D., Kvien I., Manufacturing Process of Cellulose Whiskers/Polylactic Acid Nanocomposites, Compos. Sci. Techno., 66, p. 2776 (2006).
[25] Svagan A.J., Azizi Samir M.A.S., Berglund L.A., Biomimetic Polysaccharide Nanocomposites of High CelluloseContent and High Toughness, Biomacromolecules., 8, p. 2556 (2007).
[26] Takahashi Y., "Cellulose Nanoparticles: A Route from Renewable Resources to Biodegradable Nanocomposites", PhD Thesis, College of Environmental Science and Forestry, State university of New York, (2007).
[27] Eichhorn S.J., Young R.J., The Young,s Modulus of a Microcrystalline Cellulose, Cellulose., 8, p.197 (2001).
[28] Bondeson D., "Biopolymer-Based Nanocomposites: Processing and Properties", PhD Thesis, Faculty of Engineering Science and Technology, Norwegian University of Science and Technology, (2007).
[29] Favier V., Chanzy H., Cavaillé J.Y., Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules., 28(18), p. 6365 (1995).
[30] Siro´ I., Plackett D., Microfibrillated Cellulose and New Nanocomposite Materials: A Review, Cellulose., 17, p. 459 (2010).
[31] Bondeson D., Oksman K., Polylactic Acid/Cellulose Whisker Nanocomposites Modified by Polyvinyl Alchol, Compos. Part A- Appl S., 38(12), p. 2486 (2007).
[32] Habibi Y., Dufresne A., Highly Filled Bionanocomposites from Functionalized Polysaccharide Nanocrystals, Biomacromolecules., 9(7),p. 1974 (2008).
[33] Jiang L., Morelius E., Zhang J., Wolcott M., Holbery J., Study of the Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) / Cellulose Nanowhisker Composites Prepared by Solution Casting and Melt Processing, J. Compos. Mate., 42, p. 2629 (2008).
[34] Cao X., Chen Y., Chang P.R., Muir A.D., Falk G., Starch-Based Nanocomposites Reinforced with Flax Cellulose Nanocrystals, Express Polym. Lett., 2(7), p.502 (2008).
[35] Grunert M., Winter W.T., Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose nanocrystals, J. Polym. Environ., 10(1-2), p. 27 (2002).
[36] Samir A., Alloin F., Dufresne A., Review of Recent Research in to Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field, Biomacromolecules., 6(2), p. 612 (2005).
[37] Saxena A., Ragauskas A.J., Water Transmission Barrier Properties of Biodegradable Films Based on Cellulosic Whiskers and Xylan, Carbohyd. Polym., 78, p.357 (2009).
[38] Choi Y., Simonsen J., Cellulose Nanocrystal-Filled Carboxymethyl Cellulose Nanocomposites, J. Nanosci. Nanotechno., 6(3), p. 633 (2006).
[39] Ahola S., Salmi J., Johansson L.S., Laine J., Österberg M., Model Films from Native Cellulose Nanofibrils; Preparation, Swelling, and Surface Interactions, Biomacromolecules., 9, p. 1273 (2008).
[40] Roohani M., Habibi Y., Belgacem N.M., Ebrahim Gh., Karimi A.N., Dufresne A., Cellulose Whiskers Reinforced Polyvinyl Alcohol Copolymers Nanocomposites, Eur. Polym. J., 44, p.2489 (2008).
[41] De Souza Lima M.M., Wong J.T., Paillet M., Borsali R., Pecora R., Translational and Rotational Dynamics of Rodlike Cellulose Whiskers, Langmuir., 19(1), p. 24 (2003).
[42] Dong X.M., Kimura T., Revol J.F., Gray D.G., Effect of Ionic Strength on the Isotropic-Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites, Langmuir., 12(8), p. 2076 (1996).
[43] Aziz Samir M.A.S., Alloin F., Sanchez J.Y., Dufresne A., Cellulose Nanocrystals Reinforced Poly (Oxyethylene), Polymer., 45(12), p. 4033 (2004).
[44] ASTM, "Standard Test Methods for Water Vapor Transmission of Material", E96-95, Annual Book of ASTM, Philadelphia, PA: American Society for Testing and Materials, (1995).
[45] Gontard N., Guilbert S., "Biopackaging; Food Packaging and Preservation", Blackie Academic and Professional, London, (1994).
[46] Gontard N., Guilbert S., Biopackaging: Technology and Properties of Edible and/or Biodegradable Material of Agricultural Origin, in: Ed. Mathlouthi M., "Food Packaging and Preservation", Blackie Academic and Professional, London, (1994b. 
[47] Angles M.N., Dufresne A., Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis, Macromolecules, 33, p. 8344 (2000).
[48] قنبرزاده، بابک؛ الماسی، هادی. مروری بر خواص کاربردی فیلم های زیست تخریب پذیر خوراکی حاصل از پروتئین گلوتن گندم، نشریه شیمی و مهندسی شیمی ایران، (3)28، ص. 1 (1388).