An Experimental Investigation of CuO-Acetone Nanofluid on the Thermal Performance of a Two-Phase Closed Thermosyphon

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111 Mashhad, I.R. IRAN

2 Department of Chemical Engineering, Islamic Azad University of Quchan, Quchan, I.R. IRAN

Abstract

Heat pipe and Two-Phase Closed Thermosyphon (TPCT) are devices for heat transmission. It consists of an evacuated close tube filled with a certain amount of working fluid or nanofluid. Nanofluids being suspensions of nano-sized solid particles in a base fluid are considered as new mediums for heat transfer in thermal devices. The present study is an experimental investigation which examines the effects of CuO-Acetone nanofluids with different solid weight fraction on the thermal performance of a two-phase closed thermosyphon. Experimental results show that in most cases the thermal efficiency decreased except at 1 %wt concentration. Also in comparison to pure acetone. Thermal resistance of TPCT dectreased in 0.5 and 1 %wt concentrations. In addition, the impact of two filling ratios at 1 %wt oncentration was studied.

Keywords

Main Subjects


[1] جعفری نصر، محمدرضا؛ سعیدان، مهسا؛ طراحی بهینه و مدل سازی مبدل های حرارتی قاب و صفحه­ای، نشریه شیمی و مهندسی شیمی ایران، (4) 27، ص. 79 (1387)
[2] Gauglar R.S., Heat Transfer Device, US Patent 2350348, (1994).
[3] Xiang-Qi Wang, Arun S. Mujumdar, Heat Transfer Characteristics of Nanofluids, A Review, International Journal of Thermal Sciences, 46, p. 1, (2007).
[4] Noie S.H., Heat Transfer Characteristics of A Two-Phase Closed Thermosyphon, Applied Thermal Engineering, 25, p. 495 (2005).
[5] Frank Mucciardi, Zhongsen Yuan, Chunhui Zhang, "The Heat Pipe as a Sensor for Temperature Level and Flow", Process Sensors Symposium of AISE, Canada (2001).
[6] Yimin Xuan, Qiang Li, Heat Transfer Enhancement of Nanofuids, International Journal of Heat and Fluid Flow, 21, p. 58 (2000).
[7] Maxwell J.C., "A Treastise on Electricity and Magnetism", Second Edition, Clarendon Press, Oxford, UK (1881).
[8] Choi S.U.S., Enhancing Thermal Conductivity of Fluids with Nanoparticles, Developments and Applications of Non-Newtonian Flows, FED 231/MD 66, p. 99 (1995).
[9] Paisarn Naphon, Pichai Assadamongkol, Teerapong Borirak Experimental Investigation of Titanium Nanofluids on the Heat Pipe Thermal Efficiency, International Communications in Heat and Mass Transfer, 35, p. 1316 (2008).
[10] Noie S.H., Zeinali Heris S., Kahani M., Nowee S.M., Heat Transfer Enhancement Using Al2O3/Water Nanofluid in a Two-Phase Closed Thermosyphon, International Journal of Heat and Fluid Flow, 30, p. 700 (2009).
[11] Devdatta P. Kulkarni, Debendra K. Das, Ravikanth S. Vajjha, Application of Nanofluids in Heating Buildings and Reducing Pollution, Applied Energy, 86, p. 2566 (2009).
[12] Jian Qu, Hui-ying Wu, Ping Cheng, Thermal Performance of an Oscillating Heat Pipe with Al2O3-Water Nanofluids,International Communications in Heat and Mass Transfer, 37, p. 111 (2010).
[13] Weerapun Duangthongsuk, Somchai Wongwises, Heat Transfer Enhancement and Pressure Drop Characteristics of TiO2-Water Nanofluid in a Double-Tube Counter Flow Heat Exchanger, International Journal of Heat and Mass Transfer, 52, p. 2059 (2009).
[14] Weerapun Duangthongsuk, Somchai Wongwises, An Experimental Study on the Heat Transfer Performance and Pressure Drop of TiO2-Water Nanofluids Flowing Under A Turbulent Flow Regime, International Journal of Heat and Mass Transfer, 53, p. 334 (2010).
[15] Wenhua Yu a, David M. France, David S. Smith, Dileep Singh, Elena V. Timofeeva, Jules L. Routbort, Heat Transfer to a Silicon Carbide/Water Nanofluid, International Journal of Heat and Mass Transfer, 52, p. 3606 (2009).
[16] Tun-Ping Tenga, How-Gao Hsua, Huai-En Mob, Chien-Chih Chenc, Thermal Efficiency of Heat Pipe with Alumina Nanofluid, Journal of Alloys and Compounds, 504S, p. 5380 (2010).
[17] Zhen-Hua Liu, Yuan-Yang Li, Ran Bao, Thermal Performance of Inclined Grooved Heat Pipes Using Nanofluids, International Journal of Thermal Sciences, 49, p. 1680 (2010).
[18] Samal S., Satpati1 B., Chaira D., Production and Dispersion Stability of Ultrafine Al-Cu Alloy Powder in Base Fluid, Journal of Alloys and Compounds, 504S, p. 5389 (2010).
[19] Chung S.J., Leonard J.P., Nettleship I., Lee J.K., Soong Y., Martello D.V., Chyu M.K., Characterization of ZnO Nanoparticle Suspension in Water, Effectiveness of Ultrasonic Dispersion, Powder Technology, 194, p. 75 (2009).
[20] Khandekar S., Joshi Y., Mehta B., Thermal Performance of Closed Two-Phase Thermosyphon Using Nanofluids, International Journal of Thermal Science, 47, p. 659 (2007).
[21] Abrishamchi I., Nowee S. M., Rezazadeh R., Noie S.H., Effect of Working Fluid on the Performance of Thermosyphon Heat Exchangers in Series Used in An Air Conditioning System, "Proceedings of International Conference on Chemical Engineering and Applications", Singapore (2010).
[22] سرمستی امامی، محمدرضا؛ نوعی باغبان، سید حسین؛ خشنودی، محمد؛ اثر نسبت ابعاد و نسبت پر شدن بر عملکرد گرمایی یک ترموسیفون دوفازی بسته شیبدار، مجله ایرانی علوم و تکنولوژی، 32 (ب ـ 1)، ص. 39 (1387).
[23] غلامی بناد کوکی، محمد مهدی؛ بررسی اثر زاویه شیب بر عملکرد لوله گرمایی، نشریه امیرکبیر، 14 (ب ـ 54)، ص. 414 (1382).
[24] کاهانی، مصطفی؛ نوعی باغبان، سیدحسین؛ زینالی هریس، سعید؛ مقایسه عملکرد حرارتی یک ترموسیفون دوفازی بسته در اثر استفاده از نانوسیال های اکسیدفلزی، جداسازی و پدیده­های انتقال (دانشکده مهندسی)، 21، ص. 43(1389).