Polyhydroxybutyrate Production from Mixture of Corn Germ and Bran by Solid-State Fermentation

Document Type : Research Article

Authors

Biotechnology Research Laboratory, School of Chemical Engineering, Iran University of Science and Technology, P.O. Box 16846-13114 Tehran, I.R. IRAN

Abstract

Biodegradable polymer of polyhydroxybutyrate (PHB) is an intracellular inclusion that accumulated by certain microorganism under unfavorable growth condition as a carbon and energy reserve. Properties of PHB are similar to polypropylene, and it has been attracted by some different industries. The main problem in achieving the commercial production of this substance is its high final cost. One of the most significant ways to reduce the cost of this valuable biopolymer is the application of high-productivity processes and low-priced raw materials as a substrate. Solid State Fermentation (SSF) is a useful system for production of secondary metabolites using some of the agricultural residues as substrates. This study aims at utilizing the SSF process and microorganism of Wautersia eutropha and investigating the mixture of corn bran and grem as the low-priced substrates in PHB production. Two effective factors including, the composition percentage of substrate and temperature in the production of PHB and enriching the substrate by molasses for the purpose of increasing the productivity of this metabolite in Erlen scale have been evaluated. The maximum PHB production and related productivity at 28 °C and substrate containing 50% corn germ were obtained 3.255 g/kg and 0.045 g/kg/h, respectively.

Keywords

Main Subjects


[1] Castilho L.R., Mitchell D.A., Denise M.G., Freire C., Production of Polyhydroxyalkanoates (PHAs) from Waste Materials and by-Products by Submerged and Solid-State Fermentation, Bioresource Technol., 100, p. 5996 (2009). 
[2] Ray S.S., Bousmina M., Biodegradable Polymers and Their Layered Silicate Nanocomposites: In Greening the 21st Century Materials World, Prog. Mater. Sci., 50, p. 962 (2005).
[3] Khanna S., Srivastava A.K., Recent Advances in Microbial Polyhydroxyalkanoates, Process Biochem., 40, p. 607 (2004).
[4] Steinbuchel A., Fuchtenbusch B., Bacterial and other Biological Systems for Polyester Production, Trends Biotechnol., 16, p. 419 (1998).
[5] کیانوش خسروی دارانی، ابراهیم واشقانی فراهانی، انواع ریزه سازواره و سامانه تولید پلیمر زیست تخریب پذیر پلی هیدروکسی بوتیرات، نشریه شیمی و مهندسی شیمی ایران، (1)39، ص. 1 (1384).
[6] زهرا بیگم مختاری حسینی، ابراهیم واشقانی فراهانی، سید عباس شجاع الساداتی، افزایش تولید پلی هیدروکسی بوتیرات از متانول به وسیله متیلوباکتریوم اکستروکوئنس و سوبسترای مخلوط، علوم و تکنولوژی پلیمر، 23، ص. 397 (1389).
[7] Mokhtari-Hosseini Z.B., Vasheghani-Farahani E., Heidarzadeh-Vazifekhoran A., Shojaosadati S. A., Karimzadeh R., Khosravi Darani K., Statistical Media Optimization for Growth and PHB Production from Methanol, Bioresource Technol., 100, p. 2436 (2009).
[8] Altman A., Hasegawa P.M., "Plant Biotechnology and Agriculture: Prospects for the 21st Century", 1st ed., Elsevier, (2012).
[9] Ramadas N.V., Singh S.K., Soccol C.R., Pandey A., Polyhydroxybutyrate Production Using Agro-industrial Residue as Substrate by Bacillus sphaericus NCIM 5149, Braz. Arch. Biol. Techn., 52, p. 17 (2009).
[10] Beom Soo K., Production of Poly(3-Hydroxybutyrate) from Inexpensive Substrates, Enzyme Microb. Tech., 27, p. 774 (2000).
[11] Mitchell D.A., Berovic A.M., Kreiger N., Overview of Solid State Bioprocessing, Biotechnol. Annu. Rev., 8, p. 183 (2002).
[12] González J.B., Solid-State Fermentation: Physiology of Solid Medium, its Molecular Basis and Applications, Process Biochem., 47, p. 175 (2012).
[13] Vandamme P., Coenye T., Taxonomy of the Genus Cupriavidus: a Tale of Lost and Found, Int. J. Syst. Evol. Microbiol., 54, p. 2285 (2004).
[14] Oliveira F.C., Freire D.M.G., Castilho L.R., Production of Poly(3-Hydroxybutyrate) by Solid-State fermentation with Ralstonia Eutropha, Biotechnol. Lett., 26, p. 1851 (2004).
[15] Jiang Y., Song X., Li P., Dai C. and Shao W., High Poly(bhydroxybutyrate) Production by Pseudomonas Fluorescens A2a5 from Inexpensive Substrates, Enzyme Microb. Technol., 42, p. 167 (2008).
[16] Yilmaz M. and Beyatli Y., Poly-b-Hydroxybutyrate (PHB) Production by a Bacillus Cereus M5 Strain in Sugarbeet Molasses, Zuckerindustrie, 130, p. 109 (2005).
[17] Frey D. D. and Wang H., Adaptive One-Factor-at-a-Time Experimentation and Expected Value of Improvement, Technometrics, 48, p. 418 (2006). 
[18] Shahrim Z., Sabaratnam V., Rahman N. A. A., Abd-Aziz S.,  Hassan M. A.,  Karim M. I. A.,Production of Reducing Sugars by Trichoderma sp. KUPM0001 During Solid Substrate Fermentation of Sago Starch Processing Waste Hampas, Research J. Microb., 3, p. 569 (2008).
[19] Miller G. L., Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar, Anal. Chem., 31, p. 426 (1959).
[20] Michel D., Gilles K. A., Hamilton J. K., Rebers P. A. and Smith F., Colorimetric Method for Determination of Sugars and Related Substances, Anal. Chem., 28, p. 350 (1958).
[21] Braunegg G. and Lefebre G., Polyhydroxyalkanoates, Biopolymers from Renewable Resources: Physiological and Engineering Aspects, J. Biotechnol., 65, p. 127 (1978).
[22] Law J. H., Slepecky R. A., Assay of Poly-13-Hydroxybutyric Acid, J. Bacteriol., 82, p. 33 (1960).
[23] Sheua D.S., Chenb W.M.,"Thermophilic Bacterium Caldimonas Taiwanensis Produces poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) from Starch and Valerate as Carbon Sources, Enzyme Microb. Technol., 44, p. 289 (2009).
[24] Sangkharak K., Nutrient Optimization for Production of Polyhydroxybutyrate from Halotolerant Photosynthetic Bacteria Cultivated Under Aerobic-Dark Condition, Electronic J. Biotech., 11, p. 1 (2008).
[25] Zhang L., Zhao H., Gan M., Jin Y., Gao X., Chen Q., Guan J., Wang Z., Application of Simultaneous Saccharification and Fermentation (SSF) from Viscosity Reducing of Raw Sweet Potato for Bioethanol Production at Laboratory, Pilot and Industrial Scales, Bioresource Technol., 102, p. 4573 (2011).