Preparation of Nanoporous Poly(Vinylidene Fluoride) Membrane and Consideration of Its Performance

Document Type : Research Article

Authors

1 Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, I.R. IRAN

2 Faculty of Architecture & Art, Department of Carpet, University of Kashan, Kashan, I.R. IRAN

Abstract

In this research, nanoporous poly(vinylidene fluoride) (PVDF) membrane was prepared via Non-solvent Induced Phase Separation (NIPS) method at solution temperature of 75°C and coagulation bath temperature of 20°C. Also, mechanism of PVDF membrane formation (morphology) and its performance (flux of pure water and rejection efficiency of 7 biological compounds) was investigated. In the formation of this membrane, binodal demixing was dominant mechanism and that crystallization and spinodal decomposition caused to form granular structure at membrane surface and rim of macrovoids. Size of membrane pores was measured by Barett-Joyner-Halenda (BJH) method. This method showed that the size of these membrane pores is in nanoscale (i.e. 18-27 nm). Flux of pure water and rejection of the biological compound of blue dextran at pressure of 200 kPa were for this PVDF membrane 23.60 L/m2h and 92.5% respectively that were measured by the use of ultrfiltration apparatus.  

Keywords

Main Subjects


 
[1] Tan X., Tan S.P., Teo W.K., Li K., Polyvinylidene Fluoride (PVDF) Hollow Fibre Membranes for Ammonia Removal from Water, J. Membr. Sci., 271, p. 59 (2006).
[2] Khayet M., Matsuura T., Preparation and Characterization of Polyvinylidene Fluoride Membranes for Membrane Distillation, Ind. Eng. Chem. Res., 40, p. 5710 (2001).
[3] Han L.F., Xu Z.L., Yu L.Y., Wei Y.M., Cao Y., Performance of PVDF/Multi-Nanoparticles Composite Hollow Fibre Ultrafiltration Membranes, Iran. Polym. J., 19, p. 553 (2010).
[4] Gao K., Hu X., Dai C., Yi T., Crystal Structures of Electrospun PVDF Membranes and Its Separator Application for Rechargeable Lithium Metal Cells, Mater. Sci. Eng. B, 131, p. 100 (2006).
[5] Cheng L.P., Lin D.J., Shih C.H., Dwan A.H., Gryte C.C., PVDF Membrane Formation by Diffusion-Induced Phase Separation-Morphology Prediction Based on Phase Behavior and Mass Transfer Modeling, J. Polym. Sci. B: Polym. Phys., 37, p. 2079 (1999).
[6] Lin D.J., Chang C.L., Chang C.L., Chen T.C., Cheng L.P., Fine Structure of Poly(vinylidene fluoride) Membranes Prepared by Phase Inversion from a Water/N-Methyl-2-pyrollidone/Poly(vinylidene fluoride) System, J. Polym. Sci. B: Polym. Phys., 42, p. 830 (2004).
[7] Lin D.J., Chang H.H., Chen T.C., Lee Y.C., Cheng L.P., Formation of Porous poly(vinylidene Fluoride) Membranes with Symmetric or Asymmetric Morphology by Immersion Precipitation in the Water/TEP/PVDF System, Eur. Polym. J., 42, p. 1581 (2006).
[8] Strathmann H., Kock K., The Formation Mechanism of Phase Inversion Membranes, Desalination, 21, p. 241 (1977).
[9] Stropnik, Č., Kaiser, V., Polymeric Membranes Preparation by Wet Phase Separation: Mechanisms and Elementary Processes, Desalination, 145, p. 1 (2002).
[10] Mulder, M., "Basic Principles of Membrane Technology",Kluwer Academic Publishers, Dordrecht (1997).
[11] Barzin J., Madaeni S.S., Mirzadeh H., Effect of Preparation Conditions on Morphology and Performance of Hemodialysis Membranes Prepared from Polyether Sulphone and Polyvinylpyrrolidone, Iran. Polym. J., 14, p. 353 (2005).
[12] Lin D.T., Cheng L.P., Kang Y.J., Chen L.W., Young T.H., Effects of Precipitation Conditions on the Membrane Morphology and Permeation Characteristics, J. Membr. Sci., 140, p. 185 (1998).
[13] Li D., Chung T.S., Ren J., Wang R., Thickness Dependence of Macrovoid Evolution in Wet Phase-Inversion Asymmetric Membranes, Ind. Eng. Chem. Res., 43, p. 1553 (2004).
[14] Yeow M.L., Liu Y.T., Li K., Morphological Study of Poly(Vinylidene Fluoride) Asymmetric Membranes: Effects of the Solvent, Additive, and Dope Temperature, J. Appl. Polym. Sci., 92, p. 1782 (2004).
[15] Cheng L.P., Effect of Temperature on the Formation of Microporous PVDF Membranes by Precipitation from 1-Octanol/DMF/PVDF and Water/DMF/PVDF Systems, Macromolecules, 32, p. 6668 (1999).
[16] Buonomenna M.G., Macchi P., Davoli M., Drioli E., Poly(Vinylidene Fluoride) Membranes by Phase Inversion: The Role the Casting and Coagulation Conditions Play in Their Morphology, Crystalline Structure and Properties, Eur. Polym. J., 43, p. 1557 (2007).
[17] Madaeni S.S., Rahimpour A., Barzin J., Preparation of Polysulphone Ultrafiltration Membranes for Milk Concentration: Effect of Additives on Morphology and Performance, Iran. Polym. J., 14, p. 421 (2005).
[18] Bulte A.M.W., Folkers B., Mulder M.H.V., Smolders C.A., Membranes of Semicrystalline Aliphatic Polyamide Nylon 4,6: Formation by Diffusion-Induced Phase Separation, J. Appl. Polym. Sci., 50, p. 13 (1993).
[19] Cheng L.P., Young T.H., Fang L., Gau J.J., Formation of Particulate Microporous Poly(Vinylidene Fluoride) Membranes by Isothermal Immersion Precipitation from the 1-Octanol/ Dimethyl formamide/ Poly(Vinylidene Fluoride) System, Polymer, 40, p. 2395 (1999).
[20] Smolders C.A., Reuvers A.J., Boom R.M., Wienk I.M., Microstructures in Phase-Inversion Membranes. Part 1. Formation of Macrovoids, J. Membr. Sci., 73, p. 259 (1992).
[21] Boom R.M., Wienk I.M., van den Boomgaard Th., Smolders C.A., Microstructures in Phase-Inversion Membranes. Part 2. The Role of Polymeric Additive, J. Membr. Sci., 73, p. 277 (1992).
[22] Akbari A., Homayonfal M., Jabbari V., Synthesis and Characterization of Composite Polysulfone Membranes for Desalination in Nanofiltration Technique, Water Sci. Technol., 62, p. 2655 (2010).
[23] Young T.H., Cheng L.P., Lin D.J., Fane L., Chuang W.Y., Mechanisms of PVDF Membrane Formation by Immersion-Precipitation in Soft (1-Octanol) and Harsh (Water) Nonsolvents, Polymer, 40, p. 5315 (1999).
[24] Bulte A.M.W., Mulder M.H.V., Smolders C.A., Strathmann H., Diffusion Induced Phase Sseparation with Crystallizable Nylons. I. Mass Transfer Processes for Nylon 4,6, J. Membr. Sci., 121, p. 37 (1996).
[25] Wijmans J.G., Kant J., Mulder M.H.V., Smolders C.A., Phase Separation Pphenomena in Solutions of Polysulfone in Mixtures of a Solvent and a Nonsolvent: Relationship with Membrane Formation, Polymer, 26, p. 1539 (1985).
[26] Barzin J., Sadatnia B., Theoretical Pphase Diagram Calculation and Membrane Morphology Evaluation for Water/Solvent/Polyethersulfone Systems, Polymer, 48, p. 1620 (2007).
[27] van Aartsen J.J., Theoretical Observations on Spinodal Decomposition of Polymer Solutions, Eur. Polym. J., 6, p. 919 (1970).
[28] Bucknall C.B., Gomez C.M., Quintard I., Phase Separation from Solutions of Poly(ether Sulfone) in Epoxy Resins, Polymer, 35, p. 353 (1994).
[29] Nashi T., Wang T.T., Kwei T.K., Thermally Induced Phase Separation Behavior of Compatible Polymer Mixtures, Macromolecules, 8, p. 227 (1975).
[30] Gregorio Jr., R., Sousa Borges, D., Effect of Crystallization Rate on the Formation of the Polymorphs of Solution Cast Poly(Vinylidene Fluoride), Polymer, 49, p. 4009 (2008).
[31] Mendelsohn J.D., Barrett C.J., Chan V.V., Pal A.J., Mayes A.M., Rubner M.F., Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers, Langmuir, 16, p. 5017 (2000).
[32] Bottino A., Capannelli G., Monticelli O., Piaggio P., Poly(Vinylidene Fluoride) with Improved Functionalization for Membrane Production, J. Membr. Sci., 166, p. 23 (2000).
[33] Yan, L., Wang, J., Development of a New Polymer Membrane - PVB/PVDF Blended Membrane, Desalination, 281, p. 455 (2011).
[34] Lin D.-J., Chang C.-L., Huang F.-M., Cheng L.-P., Effect of Ssalt Additive on the Formation of Microporous Poly(Vvinylidene Fluoride) Membranes by Phase Inversion from LiClO4/Water/DMF/PVDF System, Polymer, 44, p. 413 (2003).
[35] Yuan Z., Dan-Li X., Porous PVDF/TPU Blends Asymmetric Hollow Fiber Membranes Prepared with the Use of Hydrophilic Additive PVP (K30), Desalination, 223, p. 438 (2008).
[36] Nunesa S.P., Peinemann K.V., Ultrafiltration Membranes from PVDF/PMMA Blends, J. Membr. Sci., 73, p. 25 (1992).
[37] Rajesh S., Senthilkumar S., Jayalakshmi A., Nirmala M.T., Ismail A.F., Mohan D., Preparation and Performance Evaluation of Poly (Amide-Imide) and TiO2 Nanoparticles Impregnated Polysulfone Nanofiltration Membranes in the Removal of Hhumic Substances, Collo. Surf. A: Physicochem. Eng. Aspects, 418, p. 92 (2013).
[38] Han B., Zhang D., Shao Z., Kong L., Lv S., Preparation and Characterization of Cellulose Acetate/Carboxymethyl Cellulose Acetate Blend Ultrafiltration Membranes, Desalination, 311, p. 80 (2013).
[39] Rana D., Scheier B., Narbaitz R.M., Matsuura T., Tabe S., Jasim S.Y., Khulbe K.C., Comparison of Ellulose Acetate (CA) Membrane and Novel CA Membranes Containing Surface Modifying Macromolecules to Remove Pharmaceutical and Personal Care Product Micropollutants from Drinking Water, J. Membr. Sci., 409, p. 346 (2012).
[40] Leo C.P., Linggawati A., Mohammad A.W., Ghazali Z., Effects of γ-Aminopropyltriethoxylsilane on Morphological Characteristics of Hybrid Nylon-66-Based Membranes Before Electron Beam Irradiation, J. Appl. Polym. Sci., 122, p. 3339 (2011).