Evaluation of Different Levels of Retrofit and Optimization of Cold-Section of BIPC Olefin Plant

Document Type : Research Article

Authors

1 School of Chemical Engineering, University of Tehran, Tehran, I.R. IRAN

2 Department of Chemical Engineering, Tarbiat Modares University, Tehran, I.R. IRAN

Abstract

In this paper, retrofit and optimization of the cold-end section of 6th Olefin plant of BIPC is investigated. Having considered the importance of a simultaneous design through the elements (distillation columns, heat exchanger network and refrigeration cycles), three levels of modifications are suggested. The best operating column parameters along with available refrigeration cycles, a modification of refrigeration levels along with the same core process and heat exchanger network and finally a comprehensive and simultaneous retrofit scheme are evaluated for this case study. Having compared the results, one can conclude that simultaneous optimization of operating column parameters, refrigeration cycles and the associated heat exchanger network leads to higher efficiency showing 23.9% of energy saving with an investment payback of 3 months.

Keywords

Main Subjects


[1] Fair J.R., Seibert A.F, A New Ultracapacity Tray for Distillation Columns, Trans IChemE, Part A, Chem. Eng. Res. Des., 77, p. 619 (1999).
[2] Billingham J.F., Lockett M.J., Development of a New Generation of Structured Packings for Distillation, Trans IChemE, Part A, Chem. Eng. Res. Des., 77, p. 583 (1999).
[3] Kister H.Z., Larson K.F., Yanagi T., How Do Trays and Packings Stack up? , Chem. Eng. Prog., 90(2), p. 23 (1994).
[4] Bravo J.L., Select Structured Packings or Trays?, Chem. Eng. Prog., 93(6), p. 36 (1997).
[5] Liu Z.-Y., Jobson M., Retrofit Design for Increasing the Processing Capacity of Distillation Columns 1. A Hydraulic Performance Indicator, Institution of Chemical Engineers Trans IChemE, Part A, Chem. Eng. Res. Des., 82(A1), p. 3, (2004).
[6] Williams J.A., Optimise Distillation System Revamps, Chem. Eng. Prog., 94(3), p. 23 (1998).
[7] Sloley A. W., Should You Switch to High Capacity Trays?, Chem. Eng. Prog., 95(1), p. 23 (1999).
[8] Litzen D.B., Bravo J.L., Uncover Low-Cost Debottlenecking Opportunities, Chem. Eng. Prog., 95(3), p. 25 (1999).
[9] Manley D.B., Capacity Expansion Options for NGL Fractionation, "Proc 77th GPA Annual Convention", Gas Processors Association, p. 114 (1998).
[10] Liu Z.-Y., Jobson M., Hydraulic Analysis of Distillation Columns for Retrofit Design, AIChE Spring Meeting, (1999).
[11] Liebmann K., “Integrated Crude Oil Distillation Design”, Ph.D. Thesis, UMIST, Manchester, UK, (1997).
[12] Triantafyllou C., “The Design Optimization and Integration of DividingWall Distillation Columns”, Ph.D. Thesis, UMIST, Manchester, UK, (1991).
[13] Amminudin K.A., Smith R., Design and Optimization خf Fully Thermally Coupled Distillation Columns, Part2 : Application of Dividing Wall Columns in Retrofit, Institution of Chemical Engineers Trans IChemE, 79( A), p. 716 (2001).
[14] Naka Y., Terashita M., Hayashiguchi S., Takamatsu T., An Intermediate Heating and Cooling Method for a Distillation Column, J. Chem. Eng. Japan, 13(2), p. 123 (1980).
[15] Terranova B.E., Westerberg A.W., Temperature-Heat Diagrams for Complex Columns. 1. Intercooled /Interheated Distillation Columns, Ind. Eng. Chem. Res., 28(9), p. 1374 (1989).
[16] Dhole V. R., Linnhoff B., Distillation Column Targets, Comput. Chem. Eng., 17(5/6), p. 549 (1993).
[17] Ognisty T.P., Analyze Distillation Columns with Thermodynamics, Chem. Eng. Prog., 91(2), p. 40 (1995).
[18] Hall S.G., Ognisty T.P., Northup A.H., Use Process Integration to Improve FCC/VRU Design Part 1, Hydro Process, 43(3) p. 63 (1995).
[19] Trivedi K.K., Pang K.H., Young D.L. O’, H.W. Klavers, B. Linnhoff, Optimize A Licensor’s Design Using Pinch Technology, Hydro Process, 75(5), p. 113 (1996).
[20] Benedict M., Multistage Separation Processes, Trans AIChE, 43(2), p. 41 (1947).
[21] Fonyo´ Z., Thermodynamic Analysis of Rectification. I. Reversible Model of Rectification, Int. Chem. Eng., 14(1), p.18 (1974).
[22] King C.J., “Separation Processes”, McGraw-Hill, New York, (1980).
[23] Fitzmorris R.E., R.S.H. Mah, Improving Distillation Column Design Using Thermodynamic Availability Analysis, AIChE J., 26(2), p. 265 (1980).
[24] Ho F.G., Keller G.E., “Process integration, in Recent Developments in Chemical Process and Plant Design”, John Wiley, New York (1987).
[25] Demirel Y., Retrofit of Distillation Columns Using Thermodynamic Analysis, Journal of Separation Science and Technology, 41, p.791 (2006).
[26] Nguyen N., Demirel Y., Retrofit of Distillation Columns in Biodiesel Production Plants, Energy J., 35, p.1625 (2010).
[27] Lynd L.R., Grethlein L.R., Distillation with Intermediate Heat Pumps and Optimal Sidestream Return, AIChE J., 32(8), p. 1347 (1986).
[28] Aguirre P., Espinosa J., Tarifa E., Scenna N., Optimal Thermodynamic Approximation to Reversible Distillation by Means of Interheaters and Intercoolers, Ind. Eng. Chem. Res., 36(11), p. 4882 (1997).
[29] Shelton R.M., Grossman I. E., Optimal Synthesis of Integrated Refrigeration Systems-I: Mixed-Integer Programming Model, Comput. Chem. Eng., 10 (5), p. 445 (1986).
[30] Tahouni N., Panjeshahi M. H., and Ataei A., Comparison of Sequential and Simultaneous Design and Optimization in Low-Temperature Liquefaction and Gas Separation Processes, Journal of the Franklin Institute, 348, p. 1456 (2011).
[31] Lee G.-C., “Optimal Design and Analysis of Refrigeration Systems for Low Temperature Processes”, Ph.D. Thesis, Department of Process Integration, University of Manchester, U.K., (2001)
[32] Panjeshahi M.H., Ghasemian Langeroudi E., Tahouni N., Retrofit of Ammonia Plant for Improving Energy Efficiency, Energy J., 33, p. 46 (2008).
[33] Wang J., Smith R., Synthesis and Optimization of Low-Temperature Gas Separation Processes, Ind. Eng. Chem. Res., 44(8), p. 2856 (2005).
[34] PILOT, Software for Targeting and Design of HEN, University of Tehran, (2010).
[35] پنجه شاهی، محمد حسن؛ مبنای محاسبه انرژی و سرمایه در پروژه­های آنالیز پینچ، دانشگاه تهران، سازمان بهینه­سازی مصرف سوخت، خرداد (1383).