The Increasing Trend of Carbon Bed in a Metal Production System Under Microwaves

Document Type : Research Article


Faculty of Chemical, Petroleum and Gas Engineering, Semnan University, Semnan, I.R. IRAN


Domestic companies in metal and alloy production have faced many problems in providing the required energy. These companies often use traditional industrial furnaces, which consume a lot of energy, have a very negative impact on the environment. For this reason, the use of modern low-consumption processes for metal oxide reduction will be of great interest. In this research, the carbon bed of a new metal oxide reduction system operated under microwave heating is modeled. In this system, the carbon bed is responsible for the heating process and converts electromagnetic waves into heat. In this system, because the metal oxide granules are imbedded inside the carbon bed that converts almost all electromagnetic waves, the heating effects of metal oxides were ignored. Comparison of the modeling results with experimental data related to carbon bed temperature rising trend showed that the used model has good accuracy and the average error is less than 5%. Based on the modeling, it was found that the carbon bed temperature (excluding metal oxide granules) increased around 9% by increasing the microwave power from 1000 w to 1200 w. In addition, SiC had better performance compared to the carbon bed in terms of the rate of generated heat. It was determined that the maximum temperature decreased by increasing the carbon emissivity parameter and the final bed temperature increased by 9% after 15 minutes by changing the emissivity parameter from 0.95 to 0.65.


Main Subjects