Using Implicit and Explicit Solvation Models on Theoretical Study Tautomerization of 3,4-dihydropyrimidin-2(1H)-imine

Document Type : Research Article

Author

Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, I.R. IRAN

Abstract

A theoretical study at the B3LYP/6-311++G (d, p) level on tautomerization of 3,4-dihydropyrimidin-2(1H)-imine(3,4DHP) into ­­1,6-dihydropyrimidin-2-amine(1,6DHP) and 1,4-dihydropyrimidin-2-amine(1,4DHP) was performed at 298.15K. Two mechanisms have been considered for these processes: (i) one in which the hydrogen is directly transferred, mechanisms A, through TS13 and TS24 in two different pathways, called P(a) and P(b), respectively and (ii) another one in which a double hydrogen transfer takes place via TS1133, TS1234 and TS2244 by formation of the corresponding dimer, mechanisms B. The results associated with the gas phase reveal that overcame to TS13 and TS24, need high activation free energies of 38.31, 40.29 kcal/mol, respectively as a consequence of the strain associated with the formation of the four-membered transition state, while overcame to TS1133, TS1234 and TS2244, require much lower activation free energies, 7.01, 8.19 and 8.98 kcal/mol, respectively. To investigate the effect of solvent on the kinetics and thermodynamics of the tautomeric process in p(a) and p(b) paths, Implicit, explicit, and a combination of both implicit and explicit solvation models in various media (protic and aprotic polar solvents) have been considered. The results show that the use of a protic polar solvent reduces the energy barrier of the corresponding transition states in a very significant amount.

Keywords

Main Subjects


[1] Singh I., Al-Wahaibi L.H., Srivastava R., Prasad O., Pathak S.K., Kumar S., Parveen S., Banerjee M., El-Emam A.A., Sinha L., DFT Study on the Electronic Properties, Spectroscopic Profile, and Biological Activity of 2-Amino-5-Trifluoromethyl-1, 3, 4-Thiadiazole with Anticancer Properties, ACS omega, 5(46): 30073-30087 (2020).
[2] Liu Y., Wang L., Zhao L., Zhang Y., Structure, Properties of Gossypol and its Derivatives from Physiological Activities to Drug Discovery and Drug Design, Nat. Prod. Rep., 39: 1282-1304 (2022).
[3] El-Meligie S.E., Khalil N.A., El-Nassan H.B., Ibraheem A.A., A Review on the Synthetic Routes to β-Keto Amides, Curr. Org. Chem., 23(19): 2005-2015 (2019).
[4] Diego Soler-Polo D., Mendieta-Moreno J.I., Trabada D.G., Mendieta J., Ortega J., Proton Transfer in Guanine-Cytosine base Pairs in B-DNA, J. Chem. Theory Comput., 15(12): 6984–6991 (2019).
[5] Queiroz A.N., Martins C.C., Santos K.L., Carvalho E.S., Owiti A.O., Oliveira K.R., Herculano A.M., da Silva A.B., Borges R.S., Experimental and Theoretical Study on Structure-Tautomerism Among Edaravone, Isoxazolone, and their Heterocycles Derivatives as Antioxidants, Saudi Pharm. J., 28(7): 819-827 (2020).
[6] Oberoi D., Dagar P., Shankar U., Vyas G., Kumar A., Sahu S., Bandyopadhyay A., Design, Synthesis, and Characterization of an Fe(II)-Polymer of a Redox non-Innocent, Heteroatomic, Polydentate Schiff's Base Ligand: Negative Differential Resistance and Memory Behaviour, New J. Chem., 42(23): 19090-19100 (2018).
[7] Namasivayam V., Vanangamudi M., Kramer V.G., Kurup S., Zhan P., Liu X., Kongsted J., Byrareddy S.N., The Journey of HIV-1 non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic, J. Med. Chem., 62(10): 4851-4883 (2018).
[8] Ziegler R.E., Desai B.K., Jee J.A., Gupton B.F., Roper T.D., Jamison T.F., 7‐Step Flow Synthesis of the HIV Integrase Inhibitor Dolutegravir, Angew. Chem. Int. Ed., 57(24): 7181-7185 (2018).
[9] Yang S., Lu, D. and Ouyang, P., Design, synthesis and evaluation of novel N-phenylbutanamide derivatives as KCNQ openers for the treatment of epilepsy, Bioorg. Med. Chem. Lett., 28(17): 3004-3008 (2018).
[11] Sajadimajd S., Bahramsoltani R., Iranpanah A., Patra J.K., Das G., Gouda S., Rahimi R., Rezaeiamiri E., Cao H., Giampieri F., Battino M., Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer, Pharmacol. Res., 151: 104584-104620 (2020).
[12] Matthes S., Bader M., Peripheral Serotonin Synthesis as a New Drug Target, Trends Pharmacol. Sci., 39(6): 560-572 (2018).
[13] Pullan J.E., Confeld M.I., Osborn J.K., Kim J., Sarkar K., Mallik, S., Exosomes as Drug Carriers for Cancer Therapy, Mol. Pharm., 16(5): 1789-1798 (2019).
[15] Dilek G., Tekin I.O., Coban B., Disli A., Gercek Z., Synthesis of Novel Selenotetrazole Purine Derivatives and their Potential Chemotherapeutic Activities, Medicinal Chemistry Research, 30(1): 84-97 (2021).
[16] Bhaskar J., Srinivas B., Gouthami D., Suresh P., One-Pot Multi-Component Synthesis and Biological Evaluation of Novel Indole-Pyrimidine Derivatives as Potent Anti-Cancer and Anti-Microbial Agents, Russian Journal of Bioorganic Chemistry, 47(4): 954-962 (2021).
[17] Rasheed M.K., Al-Rifaie D.A., Alsammarraie H.J.M., Synthesis of Fused Pyrimidines Derivatives and Mannich bases and Assess of their Antibacterial Activity, Laser Efficacy and Molecular Docking, Biochem. Cell. Arch., 21(2): 4847-4854 (2021).
[18] Dudhabale V.V., Mohite M.T., Chandgude K.V., In Silico Anticancer Activity Prediction of Pyrimidine Derivatives, World Journal of Pharmaceutical Research, 8(11): 998-1010 (2019).
[19] Smith M.B., March J., "Advanced Organic Chemistry", Wiley Interscience, New York, (2001).
[20] Dhaked, D.K., Guasch, L. and Nicklaus, M.C., Tautomer Database: A Comprehensive Resource for Tautomerism Analyses, J. Chem. Inf. Model., 60(3): 1090-1100 (2020).
[21] (a) Emamian S.R., Domingo L.R., Tayyar S.F., Tautomerism in Pyridazin-3(2H)-One: A Theoretical Study Using Implicit/Explicit Solvation Models, J, Mol, Graph, Model, 49: 47-54 (2014). (b) Chahkandi B., Tayyari S.F., Bakhshaei M., Chahkandi M., Investigation of Simple and Water Assisted Tautomerism in a Derivative of 1, 3, 4-Oxadiazole: A DFT Study,  J. Mol. Graph. Model, 44: 120-128 (2013).
[23] Mirzaei M., Sadeghi F., Molčanov K., Zarȩba J.K., Gomila R.M., Frontera A., Recurrent Supramolecular Motifs in a Series of Acid–Base Adducts Based on Pyridine-2, 5-Dicarboxylic Acid N-Oxide and Organic Bases: Inter-and Intramolecular Hydrogen Bonding, Cryst. Growth Des., 20(3): 1738-1751(2020).
[24] Shakhova M.V., Muravyev N.V., Gritsan N.P., Kiselev V.G., Thermochemistry, Tautomerism, and Thermal Decomposition of 1, 5-Diaminotetrazole: A High-Level ab Initio Study, J. Phys. Chem. A, 122(15): 3939-3949 (2018).
[25] Lu C., Tang W., Dou Z., Xie P., Xu X., Zhao S., A Reaction Density Functional Theory Study of Solvent Effects on Keto-Enol Tautomerism and Isomerization in Pyruvic Acid, Chin. J. Chem. Eng., 31: 10-16 (2021).
[26] Wang D., Zhang X., Han X., Zhou Y., Lei Y., Gao W., Liu M., Huang X., Wu H., Ketone–Enol Tautomerism, Polymorphism, Mechanofluorochromism and Solid-State Acidochromism of Isoquinolinone–Arylidenehydrazine Derivatives, J. Mater. Chem. C, 9(37): 12868-12876 (2021).
[27] Bakhouche K., Dhaouadi Z., Hammoutène D., Thermodynamic, Reactivity and Spectroscopic Properties of Curcumin: Solvent Effect, J. Iran. Chem. Soc., 19(4): 1159-1165(2022).
[28] Matsumoto H., Ikedu S., Tosaka T., Nishimura Y., Arai T., Kinetic Analysis of Tautomer Forms of Aromatic-Urea Compounds with Acetate Ions: Solvent Effect of Excited State Intermolecular Proton Transfer, Photochem. Photobiol. Sci., 17(5): 561-569 (2018).
[29] Sigalov M.V., Afonin A.V., Sterkhova I.V., Shainyan B.A., 2H-Indazole Tautomers Stabilized by Intra-and Intermolecular Hydrogen Bonds, J. Org. Chem., 84(14): 9075-9086 (2019).
[30] Tian S.X., Xu K.Z., A Density Functional Approach of Prototropic Tautomerism of Guanine, Chem. Phys., 264(2): 187–196 (2001).
[31] Mazurek A.P., Sosnowska N.S., Studies on Tautomerism in Tetrazole: Comparison of Hartree–Fock and Density Functional Theory Quantum Chemical Methods, Chem. Phys. Lett., 330(1-2): 212–218 (2000).
[33] Cramer C.J., Truhlar D.G., Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics, Chem. Rev., 99(8): 2161–2200 (1999).
[34] Barone V., Cossi M., Mennucci B., Tomasi J., A New Definition of Cavities for the Computation of Solvation Free Energies by the Polarizable Continuum Model, J. Chem. Phys., 107(8): 3210–3221 (1997).
[36] Foresman J.B., Frisch A., "Exploring Chemistry", Gaussian, Inc., Pittsburgh, PA, (1996).
[37] Raucci U., Perrella F., Donati G., Zoppi M., Petrone A., Rega N., Ab‐Initio Molecular Dynamics and Hybrid Explicit‐Implicit Solvation Model for Aqueous and Nonaqueous Solvents: GFP Chromophore in Water and Methanol Solution as Case Study, J. Comput. Chem., 41(26): 2228-2239 (2020).
[38] Becke A.D., Density‐Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys, 98: 5648-5652 (1993).
[39] Frisch M.J., Trucks G.W., Schlegel H. B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D.J.,"Gaussian 09, Revision A.02-SMP, Gaussian", Inc, Wallingford, CT, (2009).
[40] Gao H., Yang G., Jia M., Song X., Zhang Q., Yang D., A Detailed Theoretical Study on the Excited‐State Hydrogen‐Bonding Dynamics and the Proton Transfer Mechanism for a Novel White‐Light Fluorophore, J. Chin. Chem. Soc., 66(1): 56-61 (2019).
[41] Novoa J.J., Sosa C., Evaluation of the Density Functional Approximation on the Computation of Hydrogen Bond Interactions, J. Phys. Chem., 99(43): 15837-15845 (1995).
[42] Peng H., Huang P., Yi P., Xu F., Sun L., Theoretical Studies of π-Electron Delocalization and Localization on Intramolecular Proton Transfer in the Ground State, J. Mol. Struct., 1154: 590-595 (2018).
[43] Taketsugu T., Gordon M.S., Dynamic Reaction Path Analysis based on an Intrinsic Reaction Coordinate. J. Chem. Phys., 103(23): 10042-10049 (1995).
[44] Maeda S., Harabuchi Y., Ono Y., Taketsugu T., Morokuma K., Intrinsic Reaction Coordinate: Calculation, Bifurcation, and Automated Search, Int. J. Quantum Chem., 115(5): 258-269 (2015).
[45] Fukui K., Formulation of the Reaction Coordinate, J. Phys. Chem., 74: 4161-4163 (1970).
[47] Snehalatha M., Ravikumar C., Joe I.H., Sekar N., Jayakumar V.S., Spectroscopic Analysis and FT Calculations of a Food Additive Carmoisine, Spectrochim. Acta A Mol. Biomol. Spectrosc. Spectrochim Acta A, 72(3): 654-662 (2009).
[49] Chwenke D.W., Truhlar D.G., Systematic Study of Basis Set Superposition Errors in the Calculated Interaction Energy of Two HF Molecules, Chem. Phys., 82(5): 2418-2426 (1985).