Experimental and Computational Investigation of the Interaction of Various Derivatives from Imidazoacridine Heterocyclic System with Urease Enzyme

Document Type : Research Article

Authors

Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, I.R. IRAN

Abstract

In this research work, various derivatives of the heterocyclic system, imidazo [4,5-a] acridines, which have a suitable history of biological activities, were prepared using the reaction of alkylated benzoimidazole compounds with different aryl acetonitrile in high yields. After purifying and proving their structure, their interaction with urease enzyme was investigated experimentally. The experimental results of their IC50 investigation show that these compounds have a very good inhibitory ability against urease enzyme compared to the thiourea standard. Also, in order to more closely examine the interaction sites in the desired ligands and urease enzyme, simulation and molecular docking methods were used. Studies show that the chlorine derivative has the most interaction with urease. The examination and comparison of experimental and calculation results shows that these studies are very suitable and close to each other.

Keywords

Main Subjects


[1] Mazzei L., Musiani F., Ciurli S., The Structure-based Reaction Mechanism of Urease, A Nickel Dependent Enzyme: Tale of a Long Debate, JBIC Journal of Biological Inorganic Chemistry, 25(6): 829-845 (2020).
[2] Zambelli B., Mazzei L., Ciurli S., Intrinsic Disorder in the Nickel-Dependent Urease Network, Progress in Molecular Biology and Translational Science, 174: 307-330 (2020).
[3] Ren C., Wang H., Cheng Y., Ma X., Wang Y., Cyclodextrin Polymer-Confined Urease for the Fast and Efficient Removal of Urea, New Journal of Chemistry, 46(40): 19112-19117 (2022)
[4] de Fátima Â., de Paula Pereira C., Olímpio C.R.S.D.G., de Freitas Oliveira B.G., Franco L.L., da Silva P.H.C., Schiff bases and their Metal Complexes as Urease Inhibitors–A Brief Review, Journal of Advanced Research, 13: 113-126 (2018).
[5] Yun-Tong L., Jing-Wen D., Yao L., Yi-Tong G., Chao-Nan S., Fu-Yao L., Zhong-Lu Y., Syntheses, Crystal Structures and Urease Inhibition of Two Manganesen (III) Complexes with Bis-Schiff Bases, Chinese Journal of Inorganic Chemistry, 34(6): 1192-1198 (2018).
[7] Matczuk D., Siczek A., Effectiveness of the use of Urease Inhibitors in Agriculture: A Review, International Agrophysics, 35: 197-208 (2021).
[8] Graham D.Y., Miftahussurur M., Helicobacter Pylori Urease for Diagnosis of Helicobacter Pylori Infection: A Mini Review, Journal of advanced research, 13: 51-57 (2018).
[9] Cunha E.S., Chen X., Sanz-Gaitero M., Mills D.J., Luecke H., Cryo-EM Structure of Helicobacter Pylori Urease with an Inhibitor in the Active Site at 2.0 Å Resolution, Nature communications, 12(1): 1-8 (2021).
[10] Choi H., Jeong S.H., Kim T.Y., Yi J., Hahn S.K., Bioinspired Urease-Powered Micromotor as an Active Oral Drug Delivery Carrier in Stomach, Bioactive materials, 9: 54-62 (2022).
[11] Takeshita H., Watanabe E., Norose Y., Ito Y., Takahashi H., Neutralizing Antibodies for Helicobacter Pylori Urease Inhibit Bacterial Colonization in the Murine Stomach in Vivo, Biomedical Research, 40(2): 87-95 (2019).
[12] Rego Y.F., Queiroz M.P., Brito T.O., Carvalho P.G., de Queiroz V.T., de Fátima Â., Macedo J.F., A Review on the Development of Urease Inhibitors as Antimicrobial Agents Against Pathogenic Bacteria, Journal of advanced research, 13: 69-100 (2018).
[13] Hameed A., Al-Rashida M., Uroos M., Qazi S.U., Naz S., Ishtiaq M., Khan K.M., A Patent Update on Therapeutic Applications of Urease Inhibitors, Expert opinion on therapeutic patents, 29(3): 181-189 (2019).
[15] Yanai H., Iizasa H., Chihara D., Murakami T., Nishikawa J., Yoshiyama H., Epstein-Barr Virus Detection using Gastric Biopsy Specimens after Rapid Urease Test for Helicobacter Pylori, Endoscopy International Open, 7(4): E431-E432 (2019).
[17] Pop R., Tăbăran A.F., Ungur A.P., Negoescu A., Cătoi C., Helicobacter Pylori-Induced Gastric Infections: From Pathogenesis to Novel Therapeutic Approaches using Silver Nanoparticles, Pharmaceutics, 14(7): 1463 (2022).
[18] Zhang C., Guo J., Zou X., Guo S., Guo Y., Shi R., Yan F., Acridine‐Based Covalent Organic Framework Photosensitizer with Broad‐Spectrum Light Absorption for Antibacterial Photocatalytic Therapy, Advanced Healthcare Materials, 10(19): 2100775 (2021).
[19] Fonte M., Tassi N., Gomes P., Teixeira C., Acridine-Based Antimalarials-from the Very First Synthetic Antimalarial to Recent Developments, Molecules, 26(3): 600 (2021).
[20] Kothamunireddy V.D., Galla R., Synthesis, Characterization and Biological Evaluation of Novel Acridine Derivatives for Anti-Inflammatory and Analgesic Activities, Indian Journal of Pharmaceutical Sciences, 83(5): 1016-1023 (2021).
[21] Faramarzi M., Pordel M., Morsali A., Synthesis, Antiviral, Antibacterial, and Cytotoxicity Assessment of some 3H-Benzo [a] Imidazo [4, 5-j] Acridines and 3H-Benzo [a] Pyrazolo [3, 4-j] Acridines, Russian Journal of Organic Chemistry, 56(8): 1438-1445 (2020).
[22] Perrone R., Butovskaya E., Daelemans D., Palu G., Pannecouque C., Richter S.N., Anti-HIV-1 Activity of the G-Quadruplex Ligand BRACO-19, Journal of Antimicrobial Chemotherapy, 69(12): 3248-3258 (2014).
[23] Isaac I.O., Al-Rashida M., Rahman S.U., Alharthy R.D., Asari A., Hameed A., Iqbal J., Acridine-based (thio) Semicarbazones and Hydrazones: Synthesis, in Vitro Urease Inhibition, Molecular Docking and in-Silico ADME Evaluation, Bioorganic chemistry, 82: 6-16 (2019).
[24] Prasher P., Sharma M., “Azole” as Privileged Heterocycle for Targeting the Inducible Cyclooxygenase Enzyme, Drug Development Research, 82(2): 167-197 (2021).
[25] Hou Y., Shang C., Wang H., Yun J., Isatin–Azole Hybrids and their Anticancer Activities, Archiv der Pharmazie, 353(1): 1900272 (2020).
[26] Rani D., Garg V., Dutt R., Anticancer Potential of Azole Containing Marine Natural Products: Current and Future Perspectives, Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 21(15): 1957-1976 (2021).
[27]  Devasia J., Nizam A., Vasantha V.L., Azole-based Antibacterial Agents: A Review on Multistep Synthesis Strategies and Biology, Polycyclic Aromatic Compounds, 42(8): 5474-5495 (2022).
[28] Das R., Asthana G.S., Suri K.A., Mehta D., Asthana A., Recent Developments in Azole Compounds as Antitubercular Agent, Mini-Reviews in Organic Chemistry, 16(3): 290-306 (2019).
[29] de Castro Spadari C., Barreto T.L., de Queiroz V.T., de Paiva W.F., Fernandes S.A., de Fátima Â., Ishida K., Ketoconazole/Calix [n] Arenes-based Compounds Improve the Antifungal Activity Against Azole-Resistant Candida Isolates, Journal of Medical Mycology, 32(2): 101254 (2022).
[30] Alade A.A., Naghizadeh Z., Wessels C.B., Stolze H., Militz H., Adhesion Performance of Melamine-Urea–Formaldehyde Joints of Copper Azole-Treated Eucalyptus Grandis at Varied Bonding Process Conditions, Construction and Building Materials, 314: 125682 (2022).
[31] Chaudhry F., Naureen S., Aslam M., Al‐Rashida M., Rahman J., Huma R., Ain Khan M., Identification of Imidazolylpyrazole Ligands as Potent Urease Inhibitors: Synthesis, Antiurease Activity and In Silico Docking Studies, ChemistrySelect, 5(38): 11817-11821 (2020).
[32] Zaib S., Younas M.T., Zaraei S.O., Khan I., Anbar H.S., El-Gamal M.I., Discovery of Urease Inhibitory Effect of Sulfamate Derivatives: Biological and Computational Studies, Bioorganic Chemistry, 119: 105545 (2022).
[33] Rafiq M., Saleem M., Jabeen F., Hanif M., Seo S.Y., Kang S.K., Lee K.H., Facile Synthesis, Biological Evaluation and Molecular Docking Studies of Novel Substituted Azole Derivatives, Journal of Molecular Structure, 1138: 177-191 (2017).
[34] Bektaş H., Ceylan Ş., Demirbaş N., Alpay-Karaoğlu Ş.,  Sökmen B.B.,  Antimicrobial and Antiurease Activities of Newly Synthesized Morpholine Derivatives Containing an Azole Nucleus, Medicinal Chemistry Research, 22(8): 3629-3639 (2013).
[35] Abdulwahab H.G., Harras M.F., El Menofy N.G., Hegab A.M., Essa B.M., Selim A.A., El-Zahabi H.S., Novel Thiobarbiturates as Potent Urease Inhibitors with Potential Antibacterial Activity: Design, Synthesis, Radiolabeling and Biodistribution Study, Bioorganic  Medicinal Chemistry, 28(23): 115759 (2020).
[36] Islam M., Khan A., Shehzad M.T., Hameed A., Ahmed N., Halim S.A., Al-Harrasi A., Synthesis and Characterization of New Thiosemicarbazones, as Potent Urease Inhibitors: In Vitro and in Silico Studies, Bioorganic chemistry, 87: 155-162 (2019).
[37] Song W.Q., Liu M.L., Li S.Y., Xiao Z.P., Recent Efforts in the Discovery of Urease Inhibitor Identifications, Current Topics in Medicinal Chemistry, 22(2): 95-107 (2022).
[38] Sobhani S., Pordel M.,  Beyramabadi S.A., Design, Synthesis, Spectral, Antibacterial Activities and Quantum Chemical Calculations of New Cu (II) Complexes of Heterocyclic Ligands, Journal of Molecular Structure, 1175: 677-685 (2019).
[41] Anbarani H.M., Pordel M., Bozorgmehr M.R., Interaction of Imidazo [4, 5-a] Acridines with Acetylcholinesterase, Pharmaceutical Chemistry Journal, 1-7 (2022).
[43] Faramarzi M., Pordel M., Morsali A., Synthesis, Antiviral, Antibacterial, and Cytotoxicity Assessment of Some 3H-Benzo [a] imidazo [4, 5-j] acridines and 3H-Benzo [a] pyrazolo [3, 4-j] acridines, Russian Journal of Organic Chemistry, 56(8): 1438-1445 (2020).
[44] Karimi N., Pordel M., Davoodnia A., Sadeghian H., Mousavian M., Synthesis, Characterization and Biological Evaluations of New Imidazo [4, 5-a] Acridines as Potential Antibacterial Agents, Pharmaceutical Chemistry Journal, 53(1): 52-56 (2019).
[45] Adhikari A., Bhakta S., Ghosh T., Microwave-Assisted Synthesis of Bioactive Heterocycles: an Overview, Tetrahedron, 133085 (2022).
[46] Pordel M., Synthesis of New Fluorescent Compounds from Benzimidazole, Journal of Chemical Research, 36(10): 595-597 (2012).
[47] Maroofi V., Pordel M., Chegini H., Ramezani S., Synthesis, Spectral Studies and Quantum-Chemical Investigations on the Powerful Fluorophores: Imidazo [4, 5-a] Acridines, Journal of fluorescence, 25(5): 1235-1243 (2015).
[48] Sahraei R., Pordel M., Behmadi H., Razavi B., Synthesis of a New Class of Strongly Fluorescent Heterocyclic Compounds: 3H-Imidazo [4, 5-a] Acridine-11-Carbonitriles, Journal of luminescence, 136: 334-338 (2013).
[49] Wani T.A., Bakheit A.H., Zargar S., Bhat M.A., Al-Majed A.A., Molecular Docking and Experimental Investigation of New Indole Derivative Cyclooxygenase Inhibitor to Probe its Binding Mechanism with Bovine Serum Albumin, Bioorganic Chemistry, 89: 103010 (2019)
[50] Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E., The Protein Data Bank, Nucleic acids research, 28(1): 235-42 (2000).
[51] Zoete V., Cuendet M.A., Grosdidier A., Michielin O., SwissParam: a Fast Force Field Generation Tool for Small Organic Molecules, Journal of computational chemistry, 32: 2359-2368 (2011)
[52] Luenberger D.G., Ye Y., “Linear and Nonlinear Programming”, Vol. 2, Springer, (1984).
[53] Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G., A Smooth Particle Mesh Ewald Method, The Journal Of Chemical Physics, 103: 8577-8593 (1995).
[54] Zonozi F., Pordel M., Beyramabadi S.A., Morsali A., Theoretical Investigation on the Kinetics and Mechanism of the Synthesis of Fluorescent 3, 8-Disubstituted-3H-Imidazo [4, 5-a] Acridine-11-Carbonitriles, Progress in Reaction Kinetics and Mechanism, 41(4): 365-370 (2016).