Modeling of Hexane Abatement in a Fungal Biofilter with Variable Temperature at Continuous and Intermittent Loading

Document Type : Research Article

Authors

1 Chemical Engineering Department, Amirkabir University of Technology, PO Box 15875-4413 Tehran, I.R. IRAN

2 Chemical Engineering Department, Tarbiat Modares University, P.O. Box 14115-143 Tehran, I.R. IRAN

Abstract

In recent years biofiltration has been attended as an alternative method for the treatment of polluted air stream instead of traditional processes. Although temperature is a key factor in this process, biofiltration modeling based on the temperature effect on the reaction kinetics has been rarely considered. In this contribution, a dynamic mathematical model has been presented which takes into account the dispersion in gas phase, diffusion in biofilm, temperature effect, and potential of oxygen limitation in reaction kinetic. Model was calibrated and validated by using an experimental data in which the effect of temperature, intermittent and continuous loading on the biodegradation of n-hexane vapor was investigated. Results showed that model well predicted experimental data at intermittent loading in the temperature range of 30-35°C and continuous loading in the temperature range of 35-40°C. Sensitivity analysis showed that at high inlet loads, decreasing bed temperature may change the rate limited biodegradation to the diffusion limited and a part of biofilm become inactive.

Keywords

Main Subjects


[1] Spigno G, De Faveri D.M. Modeling of a Vapor-Phase Fungi Bioreactor for the Abatement of Hexane: Fluid Dynamics and Kinetic Aspects, Biotechnol. Bioeng, 89, p. 319 (2005).
[2] Dorado A.D., Baquerizo G., Maestre J.P., Gamisans X., Gabriel D., Lafuente J., Modeling of a Bacterial and Fungal Biofilter Applied to Toluene Abatement: Kinetic Parameters Estimation and Model Validation, Chem. Eng. J., 140, p. 52 (2008).
[3] Vergara-Fernandez A., Hernandez S., Revah S., Phenomenological Model of Fungal Biofilters for the Abatement of Hydrophobic VOCs, Biotechnol. Bioeng., 101, p. 1182 (2008).
[4] Vergara-Fernandez A., Van Haaren B., Revah S., Phase Partitioning of Gaseous Surface Hydrophobicity of Fusarium Solani When Grown in Liquid and Solid Media with Hexanol and Hexane, Biotechnol. Lett., 28, p.
[1] Spigno G, De Faveri D.M. Modeling of a Vapor-Phase Fungi Bioreactor for the Abatement of Hexane: Fluid Dynamics and Kinetic Aspects, Biotechnol. Bioeng, 89, p. 319 (2005).
[2] Dorado A.D., Baquerizo G., Maestre J.P., Gamisans X., Gabriel D., Lafuente J., Modeling of a Bacterial and Fungal Biofilter Applied to Toluene Abatement: Kinetic Parameters Estimation and Model Validation, Chem. Eng. J., 140, p. 52 (2008).
[3] Vergara-Fernandez A., Hernandez S., Revah S., Phenomenological Model of Fungal Biofilters for the Abatement of Hydrophobic VOCs, Biotechnol. Bioeng., 101, p. 1182 (2008).
[4] Vergara-Fernandez A., Van Haaren B., Revah S., Phase Partitioning of Gaseous Surface Hydrophobicity of Fusarium Solani When Grown in Liquid and Solid Media with Hexanol and Hexane, Biotechnol. Lett., 28, p. 2011 (2006).
[5] Devinny J.S., Deshusses M.A., Webster T.S., “Biofiltration for Air Pollution Control” Boca Raton, FL: Lewis Publishers, (1999).
[6] Van Groenestijn J.W., Kraakman N.J., Recent Developments in Biological Waste Gas Purification in Europe., Chem. Eng. J., 113, p. 85 (2005).
[7] Shareefdeen Z., Singh A., “Biotechnology for Odor and Air Pollution Control”, Springer-Verlag Berlin Heidelberg, (2005).
[8] Cox H, Moerman R.E., van Baalen S., van Heiningen W.N.M., Doddema H.J., Harder W., Performance of a Styrene-Degrading Biofilter Containing the Yeast Exophiala Ueanselmei, Biotechnol. Bioeng., 53, p. 259 (1997).
[9] Van Groenestijn J.W., Liu J.X., Removal of Alpha-Pinene from Gases Using Biofilters Containing Fungi, Atmos Environ., 36, p. 5501 (2002).
[10] Braun-Lüllemann A., Aajcherczyk A., Hüttermann A., Degradation of Styrene by White-Rot Fungi, Appl. Microbiol. Biotechnol., 47, p. 150 (1997).
[11] Garcıa-Pena E.I., Hernandez S., Favela-Torres E., Auria R., Revah S., Toluene Biofiltration by the Fungus, Scedosporium apiospermum TB1. Biotechnol Bioeng.,76, p. 61 (2001).
[12] Woertz J.R., Kinney K.A., Szaniszlo P.J., A Fungal Vapor-Phase Bioreactor for the Removal of Nitric Oxide from Waste Gas Streams, J. Air Waste Manage. Assoc., 51, p. 895 (2001).
[13] Kennes C., Veiga M.C., “Bioreactors for waste gas treatment” Dordrecht, Boston: Kluwer Academic Publishers, (2001).
[14] Spigno G., Pagella C., Fumi M.D., Molteni R., De Faveri DM., VOCs Removal from Waste Gases: Gas-Phase Bioreactor for the Abatement of Hexane by Aspergillus nıger., Chem. Eng. Sci., 58, p. 739 (2003).
[15] Kennes C., Veiga M.C., Fungal Biocatalysts in the Biofiltration of VOC Polluted Air, J. Biotechnol., 113, p. 305 (2004).
[16] Shareefdeen Z., Shaikh A.A., Ahmed A., Steady-State Biofilter Performance under Non-Isothermal Conditions, Chem. Eng. Process., 48, p. 1040 (2009).
[17] Corsi R.L., Seed L., Biofiltration of BTEX: Media, Substrate and Loading Effects, J. Environ. Prog., 14, p. 151 (1995).
[18] Leson G., Winer A.M., Biofiltration: An Innovative Air Pollution Control Technology for VOC Emissions, J. Air Waste Manage. Assoc., 41, p. 1045 (1991).
[19] Xiao-Qiang C., Xue-Min H., Guang-Da M., Influence Factors of Treating Waste Gas Containing Benzene and Toluene with Fungi-Biofilter, Chinese J. Environ. Sci., 28, p. 1873 (2007).
[20] Lu C.S., Lin M.R., Chu C.H., Temperature Effects of Trickle-Bed Biofilter for Treating BTEX Vapors, J. Environ. Eng., 125, p. 775 (1999).
[21] Jin Y., Guo L., Veiga M.C., Kennes C., Fungal Biofiltration of α-Pinene: Effects of Temperature, Relative Humidity, and Transient Loads., Biotechnol. Bioeng., 96, p. 433 (2007).
[22] Zarook S.M., Baltzis B.C., Biofiltration of Toluene Vapor under Steady State and Transient Conditions: Theory and Experimental Results, Chem. Eng. Sci., 49, p. 4347 (1994).
[23] Hodge D.S., Devinny J.S., Modeling Removal of Air Contaminants by Biofiltration, J. Environ. Eng., 121, p. 21 (1995).
[24] Deshusses M.A., Hamer G., 1. J. Dunn. Behavior Ofbiofilters for Waste Air Biotreatment. 2. Experimental Evaluation of a Dynamic Model, Environ. Sci. Technol., 29, p. 1059 (1995).
[25] Zarook S.M., Shaikh A.A., Ansar Z., Baltzis B.C., Biofiltration of Volatile Organic Compound (VOC) Mixtures under Transient Conditions, Chem. Eng. Sci., 52, p. 4135 (1997).
[26] میلاد فردوسی، بررسی اثر دما و سیستم­های هوادهی پیوسته و ناپیوسته در حذف آلاینده­های آلی در فرایند بیوفیلتراسیون، پایان نامه کارشناسی ارشد، دانشگاه صنعتی امیرکبیر، اردیبهشت 1389
[27] Zarook S.M., Baltzis B.C., Oh Y-S, Bartha R., Biofiltration of Methanol Vapor, Biotechnol. Bioeng., 41, p. 512 (1993).
[28] Zarook S.M., Shaikh A.A., Ansar Z., Baltzis B.C., Axial Dispersion in Biofilters, Biochem. Eng. J., 1, p. 77 (1998).
[29] Levenspiel O., “Chemical Reaction Engineering” (3rd edition). New York: John Wiley & Sons, Inc., (1999).
[30] Ruthven D.D.M., “Principles of Adsorption and Adsorption Processes”. New York: John Wiley & Sons, Inc., pp. 134-213 (1984).
[31] Perry R.H., Green D.W., “Perry's Chemical Engineers' Handbook” (7th ed.). New York: McGraw-Hill, Inc., (1997).
[32] Spigno G., Zilli M., Nicolella C., Mathematiacal Modeling and Simulation of Phenol Degradation in Biofilters, Biochem. Eng. J., 19, p. 267 (2004).
[33] Mackay D., “Multimedia Environmental Models: the Fugacity Approach”, Lewis Publishers. Michigan, (1991).
[34] Staudinger J., Roberts P.V., A Critical Compilation of Henry’s Law Constant Temperature Dependence Relations for Organic Compounds in Dilute Aqueous Solutions, Chemosphere, 44, p. 561 (2001).
[35] Zhang T.C., Bishop P.L., Evaluation of Tortuosity Factors and Effective Diffusivities in Biofilm, Water Res., 28, p. 2279 (1994).
[36] Fan L.S., Leyva-Ramos R., Wisecarver K.D., Zehner B.J., Diffusion of Phenol Through a Biofilm Grown on Activated Carbon Particles in a Draft-Tube Three-Phase Fluidizedbed Bioreactor, Biotechnol. Bioeng., 35, p. 279 (1990).
[37] Mohseni M., Grant Allen D., Biofiltration of Mixtures of Hydrophilic and Hydrophobic Volatile Organic Compounds, Chem Eng Sci., 55, p. 1545 (2000).
[38] Dirk-Faitakis C., Allen D.G., Biofiltration of Cyclic Air Emissions of α-Pinene at Low and High Frequencies, J. Air and Waste Manag. Assoc., 53, p. 1373 (2003).
[39] Metris A., Gerrard A.M., Cumming R.H., Weigner P., Paca J., Modelling Shock Loadings and Starvation in the Biofiltration of Toluene and Xylene, Chem. Technol. Biotechnol., 76, p. 565 (2001