Metabolic Network Modeling of Pseudomonas aeruginosa

Document Type : Research Article

Authors

Chemical Engineering Department, Ferdowsi University of Mashhad, Mashhad, I.R. IRAN

Abstract

A metabolic network comprising central metabolic pathway of Pseudomonas aeruginosa under anaerobic condition was developed. To confirm the model accuracy, a comparison between the model prediction and the corresponding experimental results from other works in the literature have been performed. Linear programming was used for this purpose. Objective function was specific growth rate of the microorganism. Base on the model predictions with this objective function, Entenr-Doudoroff and pentose phosphate pathway were both active for the catabolism of glucose. Moreover, the entire reactions of the tricarboxylic acid cycle were not active. Glucose was oxidized via the pentose phosphate pathway when maximization of cofactors ATP and NADPH were the objective of optimization, whereas Entner-Doudoroff was active for maximizing NADH. The model predictions showed a relative error less than 10 percent compare with the experimental results. The small error makes the model reliable for further researches.

Keywords

Main Subjects


1] Topley W.W.C., Wilson S.G.S., "Microbiology and Microbial Infections", 9th ed., 2, Hodder Arnold, UK (1998).
[2] Boroumand, M.A., Esfahanifard P., Saadat S., Sheikhvatan M., Hekmatyazdi, Saremi M., A Report of Pseudomonas Aeruginosa Antibiotic Resistance from a Multicenter Study in Iran. Indian Journal of Medical Microbiology, 25(4), p. 435 (2007).
[3] Ochsner, U.A., Snyder A., Vasil A.I., Vasil M.L., Effects of the Twin-Arginine Translocase on Secretion of Virulence Factors, Stress Response, and Pathogenesis. National Academy of Sciences, 99, p. 8312 (2002).
[4] Gyamerah, M., Merichetti G., Adedayo O., Scharer J.M., M M.Y., Bioprocessing Strategies for Improving Hen Egg-White Lysozyme (HEWL) Production by Recombinant Aspergillus Jiger HEWL WT-13-16. Applied Microbial Biotechnology, 60, p. 403 (2002).
[5] Gheshlaghi R., Scharer J.M., Moo-Young M., Douglas P.L., Medium Optimization for Hen Egg White Lysozyme Production by Recombinant Aspergillus Niger Using Statistical Methods. Biotechnology Bioengineering, 90, p. 754 (2005).
[6] Alvarez-Vasquez F., C. Gonzalez-Alcon, Orres N.V., Metabolism of Citric Acid Production by Aspergillus Niger: Model Definition, Steady-State Analysis and Constrained Citric Acid Production Rate Optimization, Biotechnol Bioengineering, 70, p. 82 (2000).
[7] Nissen, T.L., Schulze U., Nielsen J., Villadsen J., Flux Distributions in Anaerobic, Glucose-Limited Continuous Cultures of Saccharomyces Cerevisiae, Journal of Microbiology, 143, p. 203 (1997).
[8] Gheshlaghi R., Scharer J.M., Moo-Young M., Douglas P.L., Metabolic Flux Analysis for Optimizing the Specific Growth Rate of Recombinant Aspergillus niger, Bioprocess Biosyst Engneering, 30, p. 398 (2007).
[9] Oberhardt, M.A., Puchałka J., Fryer K.E., Genome-Scale Metabolic Network Analysis of the Opportunistic Pathogen Pseudomonas Aeruginosa PAO1, Journal of Bacteriology, 190(8), p. 2790 (2008).
[10] Oberhardt M.A., Goldberg J.M., Hogardt M., Papin J.A., Metabolic Network Analysis of Pseudomonas aeruginosa During Chronic Cystic Fibrosis Lung Infection. Journal of Bacteriology, 192(20), p. 5534 (2010).
[11] Puchalka J., Oberhardt M.A., Godinho M., Bielecka A., Regenhardt D., Timmis K.N., Papin J.A., Santos V.A.P.M.D., Genome-Scale Reconstruction and Analysis of the Pseudomonas Putida KT2440 Metabolic Network Facilitates Applications in Biotechnology, PLoS Computational Biology, 4(10), (2008).
[12] Wierckx N., Ruijssenaars H.J., Winde J.H.D., Schmid A., Blank L.M., Metabolic Flux Analysis of a Phenol Producing Mutant of Pseudomonas putida S12: Verification and Complementation of Hypotheses Derived from Transcriptomics, Journal of Bacteriology, 143(2), p. 124 (2009).
[13] Jiang, X., "Process Development for the Production and Separation of Medium-Chain-Length Poly(3-Hydroxyalkanoates) by Pseudomonas Putida KT2440", Queen’s University: Kingston, Ontario, Canada. page. 155 (2010).
[14] Wang Z.-J., Wang P., Liu Y.-W., Zhang Y.-M., Chu J., Huang M.-Z., Metabolic Flux Analysis of the Central Carbon Metabolism of the Industrial Vitamin B12 Producing Strain Pseudomonas Denitrificans Using 13C-Labeled Glucose, Journal of the Taiwan Institute of Chemical Engineers, 43(2), p. 181 (2012).
[18] Hunt, J.C., Phibbs P.V., JR, Regulation of Alternate Peripheral Pathways of Glucose Catabolism During Aerobic and Anaerobic Growth of Pseudomonas aeruginosa, Journal of Bacteriology, 154, p. 793 (1983).
[19] Castillo T.d., Ramos J.L., Rodri Guez-Herva J.J., Fuhrer T., Sauer U., Duque E., Convergent Peripheral Pathways Catalyze Initial Glucose Catabolism in Pseudomonas Putida: Genomic and Flux Analysis, Journal of Bacteriology, 189, p. 5142 (2007).
[20] Cuskey, S.M., Wolff J.A., Phibbs P.V., Cloning of Genes Specifying Carbohydrate Catabolism in Pseudomonas Aeruginosa and Pseudomonas Putida, Journal of Bacteriology, 162(3), p. 865 (1985).
[21] Chia, M., Nguyen T.B.V., Choi W.J., DO-stat Fed-batch Production of 2-keto-D-gluconic Acid from Cassava Using Immobilized Pseudomonas Aeruginosa, Applied Microbial Biotechnology, 78, p. 759 (2008).
[22] Koike, I., Hattori A., Growth Yield of a Denitrifying Bacterium, Pseudomonas Denitrzpcans, under Aerobic and Denitrifying Conditions. Journal of General Microbiology, 88, p. 1 (1975).
[23] Madigan, M.T., Martinko J.M., Parker J., " Brock Biology of Microorganisms", 8th ed., 8, Simon & Schuster Custom (1977).
[24] Daddaoua A., Krell T., Alfonso C., Morel B., Ramos J.-L., Compartmentalized Glucose Metabolism in Pseudomonas Putida Is Controlled by the PtxS Repressor, Journal of Bacteriology, 192, p. 4357 (2010).
[25] Dawes, E.A., Holmas W.H., Metabolism of Sarcina Lutea 1. Carbohydrate Oxidation and Terminal Respiration, Journal of Bacteriology, 75, p. 390 (1957).
[26] Slekar, K.H., Kosman D.J., Culotta T.J.O.B.C.V.C., The Yeast Copper/Zinc Superoxide Dismutase and the Pentose Phosphate Pathway Play Overlapping Roles in Oxidative Stress Protection, The Journal of Biological Chemistry, 271(46), p. 28831 (1996).
[27] Hamel, R.D., Appanna V.D., Modulation of TCA Cycle Enzymes and Aluminum Stress in Pseudomonas fluorescens, Journal of Inorganic Biochemistry, 87, p.1 (2001).
[28] Shuler, M.L., Kargi F., "Bioprocess Engineering, Basic Concepts", 2nd ed., Prantice Hall (2002).
[29] Moat, A.G., Foster J.W., Spector M.P., "Microbial Physiology", 4th ed., John Wiley & Sons, USA (2002).
[30] Morgan, P., Kelly D.J., Dow C.S., The Tricarboxylic Acid Cycle of Heterogeneous and Swarmer Cell  Populations of Rhodomicrobium Vannielii Rm5, Journal of General  Microbiology, 12, p. 931 (1986).
[31] Prohl C., Wackwitz B., Vlad D., Unden G., Functional Citric Acid Cycle in an arcA Mutant of Escherichia coli During Growth with Nitrate under Anoxic Conditions. Arch Microbiol, 170, p. 1 (1998).
[32] Schobert M., Tielen P., Contribution of Oxygen-Limiting Conditions to Persistent Infection of Pseudomonas Aeruginosa. Future Medicine, 5, p. 603 (2010).
[33] Kretzschmar U., Khodaverdi V., Jeoung J.-H., Risch H.G., Function and Transcriptional Regulation of the Isocitrate Lyase in Pseudomonas Aeruginosa. Arch Microbiol, 190, p. 151 (2008).
[34] Ward P.P., Lo J.-Y., Duke M., May G.S., Headon D.R., Conneely O.M., Production of Biologically Active Recombinant Human Lactoferrin in Aspergillus oryzae, Biotechnology, 10, p. 784 (1922).
[35] Kim S., Seol E., Ohb Y.-K., Wangc G.Y., Park S., Hydrogen Production and Metabolic Fux Analysis of Metabolically Engineered Escherichia Coli Strains, International Journal of Hydrogen Energy, 34, p. 7417 (2009).
[36] Lee D.Y., Fanc L.T., Parkb S., Lee S.Y., Shafie S., Bertokd B., Friedler F., D.Vicente A., Complementary Identification of Multiple Fux Distributions and uMltiple Metabolic Pathways, Metabolic Engineering, 7, p. 182 (2005).
[37] Nogales, J., Palsson B.Ø., Thiele I., A Genome-Scale Metabolic Reconstruction of Pseudomonas putida KT2440: iJN746 as a Cell Factory, BMC Systems Biology, 2, p. 79 (2008).
[38] Spangler, W.J. and C.M. Gilmour, Biochemistry of Nitrate Respiration in Pseudomonas Stutzeri I. Aerobic and Nitrate Respiration Routes of Carbohydrate Catabolism, Journal of Bacteriology, 91(1), p. 245 (1966).