A Study of the Mass Transport and Charge Propagation in the Cobalt Oxide Nanoflakes

Document Type : Research Article


1 Department of Chemistry, Science and Research Branch, Islamic Azad University, Fars, I.R. IRAN

2 Department of Chemistry, K.N. Toosi University of Technology, Tehran, I.R. IRAN


A simple and efficient method was reported for the synthesis of conalt (II) oxide nanoflakes. Morphology and chemical structure of the nanoflakes were evaluated by different electron microscopy methods (scanning and transmission), X-ray diffraction, scanning tunneling microscopy and electrochemical methods. A comprehensive study on the electrochemical behavior of the nanoflakes at an interface with electrolyte, charge propagation and mass transport (counter ion diffusion) processes in the nanoflakes and the kinetic and mechanism of electrochemical reactions were performed by cyclic voltammetry and electrochemical impedance spectroscopy. Electrochemical reaction rate constants and counter cation diffusion coefficient into the nanoflakes at different potentials were reported.


Main Subjects

[1] Tvarusko A., Investigation of Manganese Dioxides, J. Electrochem. Soc., 111, 125 (1964).
[2] Lund H., Hammerich O. (Eds.), “Organic Electrochemistry”, Marcel Dekker, New York, (2001).
[3] Beer H. B., The Invention and Industrial Development of Metal Anodes, J. Electrochem. Soc., 127, p. 303C (1980).
[4] Daghetti A., Lodi G., Trasatti S., Interfacial Properties of Oxides Used as Anodes in the Electrochemical Technology, Mater. Chem. Phys., 8, p.1 (1983).
[5] Smith P.B., Bernasek S.L., The Adsorption of Water on TiO2 (001), Surf. Sci., 188, p. 241 (1987).
[6] Clarke N.S., Hall P.G., Adsorption of Water Vapor by iron Oxides. 2. Water Isotherms and X-Ray photoelectron Spectroscopy, Langmuir, 7, p. 678 (1991).
[7] Ardizzone S., Trasatti S., Interfacial Properties of Oxides with Technological Impact in Electrochemistry, Adv. Colloids Interf. Sci., 64, p. 173 (1996).
[8] Henderson M.A., The Influence of Oxide Surface Structure on Adsorbate Chemistry: Desorption of Water from the Smooth, the Microfaceted and the ion Sputtered Surfaces of TiO2 (100), Surf. Sci., 319, p. 315 (1994).
[9] Ardizzone S., Daghetti A., Franceschi L., Trasatti S., The point of Zero Charge of Hydrous RuO2, Colloids Surf., 35, p. 85 (1989).
[10] Gellings P.J., Bouwmeester H.J.M., Solid State Aspects of Oxidation Catalysis, Catal. Today, 58, p. 1 (2000).
[11] Kroger F.A., Vink H.J., Relations Between the Concentrations of Imperfections in Crystalline Solids, Solid State Phys., 3, p. 307 (1956).
[12] Burke L.D., Murphy O.J., Cyclic Voltammetry as a Technique for Determining the Surface Area of RuO2 Electrodes, J. Electroanal. Chem., 96, p. 19 (1979).
[13] Sarinell K.F., Zeller R.L., Adams J.A., Electrochemically Active Surface Area, J. Electrochem. Soc., 137, p. 489 (1990).
[14] Addi A.A., Douch J., Hamdani M., Electrochemical Characterization of Co3O4 Thin Films Produced by Chemical Spray Pyrolysis, Bull. Electrochem., 15, p. 556 (1999).
[15] Spinolo G., Ardizzone S., Trasatti S., Surface Characterization of Co3O4 Electrodes Prepared by the Sol-Gel Method, J. Electroanal. Chem., 423, p. 49 (1997).
[16] Miyata S., Anion-Exchange Properties of Hydrotalcite-Like Compounds, Clays Clay Min., 31, p. 305 (1983).
[17] Niesen T.P., De Guire M.R., Deposition of Ceramic Thin Films at Low Temperatures from Aqueous Solutions, J. Electroceram., 6, p. 169 (2001).
[18] Niesen T.P., De Guire M.R., Review: Deposition of Ceramic Thin Films at Low Temperatures from Aqueous Solutions, Solid Stat Ion., 151, p. 61 (2002).
[19] Therese G.H.A., Kamath P.V., Electrochemical Synthesis of Metal Oxides and Hydroxides, Chem. Mater., 12, p. 1195 (2000).
[20] Matsumoto Y., Morikawa T., Adachi H., Hombo J., A New Preparation Method of Barium Titanate Perovskite Film Using Electrochemical Reduction, Mater. Res. Bull., 27, p. 1319 (1992).
[21] Dobos D., “Electrochemical Data”, Elsevier, New York, (1975).
[22] Dixit M., Kamath P.V., Kumar V.G., Munichandraiah N., Shukla A.K., An Electrochemically Impregnated Sintered-Nickel Electrode, J. Power Sources, 63, p. 167 (1996).
[23] Wohlfahrt-Mehrens M., Oesten R., Wilde P., Huggins R.A., The Mechanism of Electrodeposition and Operation of Ni(OH)2 Layers, Solid State Ion., 86-88, p. 841 (1996).
[24] Murthy M., Nagarajan G.S., Weidner J.W., Zee J.W.V., A Model for the Galvanostatic Deposition of Nickel Hydroxide, J. Electrochem. Soc., 143, p. 2319 (1996).
[25] Wronski Z.S., Materials for Rechargeable Batteries and Clean Hydrogen Energy Storage, Int. Mater. Rev., 46, p. 1 (2001).
[26] Elumalai P., Vasan H.N., Munichandraiah N., Electrochemical Studies of Cobalt Hydroxide-an Additive for Nickel Electrodes, J. Power Sources, 93, p. 201 (2001).
[27] Srinivasan V., Weidner J.W., Capacitance Studies of Cobalt Oxide Films Formed via Electrochemical Precipitation, J. Power Sources, 108, p. 15 (2002).
[28] Barrera E., GonzalezI., Viveros T., A New Cobalt Oxide Electrodeposit Bath for Solar Absorbers, Solar Energy Mater. Solar Cells, 51, p. 69 (1998).
[29] Zhu J., Kailasam K., Fischer A., Thoma A.s, Supported Cobalt Oxide Nanoparticles as Catalyst for Aerobic Oxidation of Alcohols in Liquid Phase, ACS Catal., 1, p. 342 (2011).
[30] Silva G.C., Fugivara C.S., Tremiliosi Filho G., Sumodjo P.T.A., Benedetti A.V., Electrochemical Behavior of Cobalt Oxide Coatings on Cold-Rolled Steel in Alkaline Sodium Sulfate, Electrochim. Acta., 47, p. 1875 (2002).
[31] Leslie-Pelecky D.L., Rieke R.D., Magnetic Properties of Nanostructured Materials, Chem. Mater., 8, p. 1770 (1996).
[32] Kadam L.D., Pawar S.H., Patil P.S., Studies on Ionic Intercalation Properties of Cobalt Oxide Thin Films Prepared by Spray Pyrolysis Technique, Mater. Chem. Phys., 68, p. 280 (2001).
[33] Tench D., Warren L.F., Electrodeposition of Conducting Transition Metal Oxide/Hydroxide Films from Aqueous Solution, J. Electrochem. Soc., 130, p. 869 (1983).
[34] Jasem S., Tseung A.C.C., Proc. Symp. on Electrode Materials and Processes for Energy Conversion and Storage, NJ,The Electrochem. Soc., Princeton, p. 414(1977).
[35] Cataldi T.R.I., Guerrieri, A. Casella I.G., Desimoni E., Study of a Cobalt-Based Surface Modified Glassy Carbon Electrode: Electrocatalytic Oxidation of Sugars and Alditols, Electroanalysis, 7, p. 305 (1995).
[36] Fan L.F., Wu X.Q., Guo M.D., Gao Y.T., Cobalt Hydroxide Film Deposited on Glassy Carbon Electrode for Electrocatalytic Oxidation of Hydroquinone, Electrochim. Acta, 52, p. 3654 (2007).
[37] Fan L.F., Wu X.Q., Guo M.D., Gao Y.T., Cobalt Hydroxide Film Deposited on Glassy Carbon Electrode for Electrocatalytic Oxidation of Hydroquinone, Electrochim. Acta, 52, p. 3654 (2007).
[38] Salimi A., Hallaj R., Soltanian S., Mamkhezri H., Nanomolar Detection of Hydrogen Peroxide on Glassy Carbon Electrode Modified with Electrodeposited Cobalt Oxide Nanoparticles, Anal. Chim. Acta, 594, p. 24 (2007).
[39] Houshmand M., Jabbari A., Heli H., Hajjizadeh M., Moosavi-Movahedi A.A., Electrocatalytic Oxidation of Aspirin and Acetaminophen on a Cobalt Hydroxide Nanoparticles Modified Glassy Carbon Electrode, J. Solid State Electrochem., 12, p. 1117 (2008).
[40] Casella I.G., Guascito M.R., Electrochemical Preparation of a Composite Gold-Cobalt Electrode and Its Electrocatalytic Activity in Alkaline Medium, Electrochim. Acta, 45, p. 1113 (1999).
[41] Heli H., Sattarahmady N., Majdi S., A Study of the Charge Propagation in Nanoparticles of Fe2O3 Core-Cobalt Hexacyanoferrate Shell by Chronoamperometry and Electrochemical Impedance Spectroscopy, J. Solid State Electrochem., 16, p. 53 (2012).
[42] Inzelt G., in: Bard A.J. (ed.), “Electroanalytical Chemistry”, vol. 18. Marcel Dekker, New York, (1994).
[43] Dalton E.F., Surridge N.A., Jernigan J.C., Wilbourn K.O., Facci G.S., Murray R.W., Charge Transport in Electroactive Polymers Consisting of Fixed Molecular Redox Sites, Chem. Phys., 141, p. 143 (1990).
[44] Surridge N.A., Jernigan J.C., Dalton E.F., Buck R.P., Watanabe M., Zhang H., Pinkerton M., Wooster T.T., Longmire M.L., Facci J.S., Murray R.W., The Electrochemistry Group Medal Lecture. Electron Self-Exchange Dynamics Between Redox Sites in Polymers, Faraday Discuss. Chem. Soc., 88, p. 1(1989).
[45] Markov L., Petrov K.,. Lyubchova A, Topotactic Preparation of Copper-Cobalt Oxide Spinels by Thermal Decomposition of Double-Layered Oxide Hydroxide Nitrate Mixed Crystals, Solid State Ion., 39, p. 187 (1990).
[46] Barbero C., Planes G.A., Miras, M.C. Redox Coupled Ion Exchange in Cobalt Oxide Films, Electrochem. Commun., 3, p. 113 (2001).
[47] Casella I.G., Gatta M., Study of the Electrochemical Deposition and Properties of Cobalt Oxide Species in Citrate Alkaline Solutions, J. Electroanal. Chem., 534, p. 31 (2002).
[48] Svegl F., Orel B., Svegl I.G., Kaucic C.V., Characterization of spinel Co3O4 and Li-Doped Co3O4 thin Film Electrocatalysts Prepared by the Sol-Gel Route, Electrochim. Acta,45, p. 4359 (2000).
[49] Palmas S., Ferrara F., Vacca A., Mascia M., Polcaro A.M., Behavior of Cobalt Oxide Electrodes During Oxidative Processes in Alkaline Medium, Electrochim. Acta, 53, p. 400 (2007).
[50] Laviron E., A Multilayer Model for the Study of Space Distributed Redox Modified Electrodes: Part III. Influence of Interactions Between the Electroactive Centers in the First Layer on the Linear Potential Sweep Voltammograms, J. Electroanal. Chem., 122, p. 37 (1981).
[51] Daum P., Lenhard J.R., Rolison D., Murray R.W., Diffusional Charge Transport through Ultrathin Films of Radiofrequency Plasma Polymerized Vinylferrocene at Low Temperature, J. Am. Chem. Soc., 102, p. 4649 (1980).
[52] Wrighton M.S., Palazzotto M.C., Bocarsly A.B., Bolts J.M., Fischer A.B., Nadjo L., Preparation of Chemically Derivatized Platinum and Gold Electrode Surfaces. Synthesis, Characterization, and Surface Attachment of Trichlorosilylferrocene, (1,1'-Ferrocenediyl)Dichlorosilane, and 1,1'-Bis(Triethoxysilyl)Ferrocene, J. Am. Chem. Soc., 100, p. 7264 (1978).
[53] Laviron E., General Expression of the Linear Potential Sweep Voltammogram in the Ccase of Diffusionless Electrochemical Systems, J. Electroanal. Chem., 101, p. 19(1979).
[54] Bard A.J., Faulkner L.R., “Electrochemical Methods”, John Wiley, New York, (2001).
[55] Majdi S., Jabbari A., Heli H., Moosavi-Movahedi A.A., Electrocatalytic Oxidation of Some Amino Acids on a Nickel-Curcumin Complex Modified Glassy Carbon Electrode, Electrochim. Acta, 52, p. 4622(2007).
[56] Motupally S, Streinz C.C., Weidner J.W., Proton Diffusion in Nickel Hydroxide, J. Electrochem. Soc., 145, p. 29(1998).
[57] Gabrielli C., Keddam M., Nadi N., Perrot H., a.c. Electrogravimetry on Conducting Polymers. Application to Polyaniline, Electrochim. Acta, 44, p. 2095 (1999).
[58] Nemudry A., Rudolf P., Schollhorn R., Topotactic Electrochemical Redox Reactions of the Defect Perovskite SrCoO2.5+x, Chem. Mater., 8, p. 2232 (1996).
[59] Barsoukov E., Macdonald J.R., “Impedance Spectroscopy”, John Wiley, New Jersey, (2005).
[60] Neves, R.S. Robertis E.D., Motheo A., Capacitance Dispersion in EIS Measurements of Halides Adsorption on Au(2 1 0), Electrochim. Acta, 51, p. 1215 (2006).
[61] Diard J.P., Le Gorrec B., Montella C., “Cinetique Electrochimique”, Hermann, Paris, (1996).
[62] Gupta V., Kusahara T., Toyama H., Gupta S., Miura N., Potentiostatically Deposited Nanostructured α-Co(OH)2: A High Performance Electrode Material for Redox-Capacitors, Electrochem. Commun., 9, p. 2315 (2007).
[63] Bisquert, J. Compte A., Theory of the Electrochemical Impedance of Anomalous Diffusion, J. Electroanal. Chem., 499, p. 112 (2001).
[64] Kondratiev, V.V. Tikhomirova A.V., Malev V.V., Study of Charge Transport Processes in Prussian-Blue Film Modified Electrodes, Electrochim. Acta, 45, p. 751 (1999).
[65] Garcia-Jareno J.J., Navarro-Laboulais J., Sanmatias A., Vicente F., The Correlation Between Electrochemical Impedance Spectra and Voltammograms of PB Films in Aqueous NH4Cl and CsCl, Electrochim. Acta, 43, p. 1045 (1998).