Sulfur Removal from Gasoline by Pervaporation

Document Type : Research Article

Authors

Research Centre for Membrane Separation Processes, School of Chemical Engineering, Iran University of Science and Technology (IUST), Tehran, I.R. IRAN

Abstract

Sulfur present in gasoline results in air pollution by SOx emissions. With the mixtures of thiophene/n-hexane making up the model gasoline, PDMS/PA composite membrane was used for sulfur removal from gasoline by pervaporation. Effects of sulfur content (0.3-0.6 wt.%), feed temperature (30-50 ºC), permeate pressure (23-100 mmHg) and feed flow rate (30-90 L/h) were investigated on pervaporation separation of n-hexane/thiophene binary mixtures. Douglas design was used to research the effects of operating parameters on total fluxes. Experimental results indicated that sulfur content and feed flow rate have negligible effects on total flux in comparison with feed temperature and permeate pressure. Increasing feed temperature, sulfur content, feed flow rate and decreasing permeate pressure, increase total flux. According to significance of feed temperature and permeate pressure, effects of these investigated on thiophene enrichment factors. Thiophene enrichment factor increased with decreasing feed temperature and permeate pressure. The highest enrichment factor of thiophene was obtained to be 1.5 at a feed temperature of 30 ºC and a permeate pressure of 23 mmHg.

Keywords

Main Subjects


[1] Forte P., Process for the Removal of Sulfur from Petroleum Fraction, US Patent 5582714, (1996).
[2] Funakoshi I., Aida T., Process for Rcovering Organic Sulfur Compounds from Fuel Oil, US Patent 5753102, (1998).
[3] Ma X., Sun L., Song C., A New Approach to Deep Desulfurization of Gasoline, Diesel Fuel and Jet Fuel by Selective Adsorption for Ultra-Clean Fuels and for Fuel Cell Applications, Catal. Today, 77, p. 107 (2002).
[4] Hernández-Maldonado A.J., Yang F.H., Qi G., Yang R.T., Desulfurization of Transportation Fuels by л-Complexation Sorbent: Cu (I)-, Ni (II)-, and Zn (II)-Zeolites, Appl. Catal. B: Environ., 56, p. 111 (2005).
[5] Covert C., Sherpherd T.C., Thompson M.W., How Phillips s-Zorb Sulfur Removal Technology Quickly Came to Life, World Refining, 11, p. 56 (2001).
[6] Brunet S., Mey D., Perot G., Bouchyb C., Diehl F., On the Hydrodesulfurization of FCC Gasoline: A Review, Appl. Catal. A:General, 278, p. 143 (2005).
[7] Binbing H., Jiding L., Cuixian C., Wickramasinghe R., Computer Simulation and Optimization of Pervaporation Process, Desalination, 145 (1-3), p. 187 (2002).
[8] Jiding L., Cuixian C., Binbing H., Yong P., Jian Z., Weijun J., Laboratory and Pilot-Scale Study on Dehydration of Benzene by Pervaporation, J. Memb. Sci., 203, p. 127 (2002).
[9] Zhao X., Krishnaiah G., Cartwright T., S-BraneTM Technology Brings Flexibility to Refiners, Clean Fuel Solutions, in: "Proceeding of the NPRA Annual Meeting", San Antonion, TX, (2004).
[10] Minhas, S. Bhupender, Michael R. Chuba, Robert J. Saxton, Membrane Process for Separating Sulfur Compounds from FCC Light Naphtha, US Patent 6694061 (2003).
[11] Saxton, J. Robert, Minhas, S. Bhupender, Ionic Membranes for Organic Sulfur Separation from Liquid Hydrocarbon Solutions, US Patent 6702945 (2004).
[12] Lin L., Wang G., Qu H., Yang J., Wang Y., Shi O., Kong Y., PV Performance of Crosslinked Polyethylene Glycol Membranes for Deep Desulfurization of FCC Gasoline, J. Mem. Sci., 280, p. 651 (2006).
[13] Lin L., Kong Y., Wang G., Qu H., Yang J., Shi D., Selection and Crosslinking Modification of Membrane Material for FCC Gasoline Desulfurization, J. Mem. Sci., 285, p. 144 (2006).
[14] Hasanoglu A., Salt Y., Keleser S., Ozkan S., Dincer S., PV Separation of Ethyl Acetate-Ethanol Binary Mixtures Using Polydimethylsiloxane Membranes, Chem. Eng. Process., 44, p. 375 (2005).
[15] Park Y.I., Yeom C.K., Lee S.H., Kim B.S., Lee J.M., Joo H.J., PV Permeation Behavior of a Series of Chlorinated Hydrocarbon/Water Mixtures Through PDMS Membranes, J. Ind. Eng. Chem., 13, p. 272 (2007).
[16] Mohammadi T., Aroujalian A., Bakhshi A., Pervaporaion of Dilute Alcoholic Mixtures Using PDMS Membrane, Chem. Eng. Sci., 60, p. 1875(2005).
[17] Li L., Xiao Z., Tan S., Pu L., Zhang Z., Composite PDMS Membrane with High Flux for the Separation of Organics from Water by PV, J. Mem. Sci., 243, p. 177 (2004).
[18] Qi R., Wang Y., Li J., Zhao C., Zhu S., PV Separation of Alkane/Thiophene Mixtures with PDMS Membrane, J. Mem. Sci., 280, p. 545 (2006).
[19] Vankelecom I.F.J., Moermans B., Verschueren G., Jacobs P.A., Intrusion of PDMS Top Layers in Porous Supports, J. Mem. Sci., 158, p. 289 (1999).
[20] Zhao Ch., Li J., Qi R., Chen J., Luan Zh., Pervaporation Separation of n-Heptane/Sulfur Species Mixtures with Polydimethylsiloxane Membranes, Separ. Purif. Tech., 63, p. 220 (2008).
[21] Kim H.J., Nah S.S., Min B.R., A New Technique for Preparation of PDMS PV Membrane for VOC Removal, Adv. Environ. Res., 6, p. 255 (2002).
[22] Wu P., Brisdon B.J., England R., Field R.W., Preparation of Modified Difunctional PDMS Membranes and a Comparative Evaluation of Their Performance for the Pervaporative Recovery of p-Cresol from Aqueous Solution, J. Mem. Sci., 206, p. 265 (2002).
[23] Barton A.F.M., "CRC Handbook of Solubility Parameters and Other Cohesion Parameters", CRC Press, (1991).
[24] Jiraratananon R., Chanachai A., Huang R.Y.M, Uttapap D., Pervaporation Dehydration of Ethanol-Water Mixtures with Cs/HEC Composite Membranes. I. Effect of Operating Conditions, J. Membr. Sci., 195, p. 143 (2002).
[25] Sampranpiboon P., Jiraratananon R., Uttapap D., Pervaporation Separation of Ethyl Butyrate and Isopropanol with Polyether Block (PEBA) Membranes, J. Membr. Sci., 173, p. 53 (2000).
[26] Peng F., Jiang Z., Hu C., Wang Y., Xu H., Liu J., Removing Benzene from Aqueous Solution Using CMS-Filled PDMS Pervaporation Membranes, Separ. Purif. Tech., 48, p. 229 (2006).