Study of Mixing of Phases inside the Sieve Tray Using Computational Fluid Dynamics

Document Type : Research Article

Author

Chemical Engineering Department, Faculty of Engineering, Yasouj University,Yasouj, I.R. IRAN

Abstract

In the present study a three-dimensional Eulerian-Eulerian Computational Fluid Dynamics (CFD) model was developed to predict the hydrodynamics behavior of industrial scale sieve trays, for study of phase mixing inside the tray. The dispersed gas and the continuous liquid phases are as two interpenetrating phases. Three parameters consisting distribution of density of mixture, volume fraction distribution and interfacial area density were evaluated as characteristics of mixing. Four regions consisting near wall region, the area between adjacent holes, behind the entrance and exit weirs are distinguished as regions with poor mixing. Plug flow with almost uniform phase mixing was seen at central region of tray. The extent of mixing is depended on the gas and liquid flow rates, and the response of central region and above mentioned 4 poor mixing areas to change of gas and liquid flow rates are different. The results showed that proposed model can well predict some details of phase mixing characteristics, while known methods have not ability to show them.

Keywords

Main Subjects


[1] Taylor R., Krishna R., "Multicomponent Mass Transfer", Wiley-Interscience, (1993).
[2] Zhao D., Guo L., Lin C., Zhang X., An Experimental Study on Local Interfacial Area Concentration Using a Double-Sensor Probe. Int J Heat Mass Transf., 48, p. 1926 (2005).
[3] Pohorecki R., Moniuk W., Bielski P., Sobieszuk P., Da. Browiecki G., Bubble Diameter Correlation via Numerical Experiment. Chem Eng J., 113, p. 35 (2005).
[4] Delhaye J.M., Brichard P., Interfacial Area in Bubbly Flow: Experimental Data and Correlation. Nucl Eng Des., 151, p. 65 (1994).
[5] Tomida T., Yusa F., Akazaki T., Effective Interfacial are and Liquid Side Mass Transfer Coefficient in Upward Two-Phase Flow of Gas-Liquid Mixtures. Chem Eng J., 16, p. 81 (1978).
[6] Martin R., Wagner H., Po¨pel J., Kalte P., Pure Oxygen Desorption Method- a New and Cost-Efective Method for the Determination of Oxygen Transfer Rates in Clean Water. Wat Sci Tech., 38, p. 103 (1998).
[7] Puskeiler R., Weuster-Botz D., Combined Sulfite Method for the Measurement of the Oxygen Transfer Coefficient kLa in Bioreactors. J Biotechnol., 120,430–438 (2005).
[8] Van Baten J.M., Krishna R., Modeling Sieve Tray Hydraulics Using Computational Fluid Dynamics, Chem. Eng. J.,  77, p. 143 (2000).
[9] Krishna R., van Baten J.M., Ellenberger J., Higler A.P., Taylor R., CFD Simulations of Sieve Tray Hydrodynamics,  Chem. Eng. Res. Des., Trans. Inst. Chem. Eng., 77, p. 639 (1999).
[10] رهبر رحیمی، محمودرضا رحیمی، فرهاد شهرکی، بررسی توانمندی دینامیک سیالات محاسباتی در طراحی سینی های غربالی، نشریه شیمی و مهندسی شیمی ایران، 24و19 (1384).
[11] محمودرضا رحیمی، "شبیه سازی هیدرودینامیک، انتقال حرارت و انتقال جرم در سینی های غربالی برج تقطیر با استفاده از دینامیک سیالات محاسباتی"، پایان نامه دکتری مهندسی شیمی، دانشگاه سیستان و بلوچستان (1385).
[12] Gesit G.K., Nandakumar K., Chuang K.T.,  CFD Modeling of Flow Patterns and Hydraulics of Commercial-Scale Sieve Trays, AIChE. J., 49, p. 910 (2003).
[13] Rahimi R., Rahimi M.R., Shahraki F., Zivdar M., Efficiencies of Sieve Tray Distillation Columns by CFD Simulations, Chem. Eng. Technol.J., 29(3), p. 326 (2006).
[14] Rahimi M.R., Karimi H., A 3-D Two-Fluid CFD Model for Hydrodynamics of Industrial Scale Sieve Trays with Nonuniform Gas Distribution, "11th International Conference on Multiphase Flow in Industrial Plants", Palermo, Italy, 7-10 sept. (2008).
[15] Rahimi M.R., Karimi H., CFD Simulation of Hydraulics of Sieve Trays with Gas Mal-Distribution, Chemical Product and Process Modeling , 5(1),  Article 2 (2010).
[16] Alizadehdakhel A., Rahimi M., Abdulaziz Alsairafi A., Numerical and Experimental Investigation on a New Modified Valve in a Valve Tray Column, Korean Journal of ChemicalEngineering, 26(2), p. 475 (2009).
[17] Zarei T., Rahimi R., Zivdar M., Computational Fluid Dynamic Simulation of MVG Tray Hydraulics, Korean Journal of Chemical Engineering, 26(5), p. 1213 (2009).
[18] Li X.G., Liu D.X., Xu S.M. Li H., CFD Simulation of Hydrodynamics of Valve Tray, Chemical Engineering & Processing: Process Intensification, 48(1), p. 145 (2009).
[19] Rahimi M.R., Rahimi R., Shahraki F., Zivdar M., Prediction of Temperature and Concentration Distributions of Distillation Sieve Trays by CFD, Tamkang Journal of Science and Engineering, 9(3), p.265 (2006).
[20] Krishna R., Urseanu M.I., van Baten J.M., Ellenberger J., Rise Velocity of a Swarm of Large Gas Bubbles in Liquids, Chem. Eng. Sci., 54, 171 (1999).
[21] Bennett D.L., Agrawal B., Cook P.J., New Pressure Drop Correlation for Sieve Tray Distillation  Column, AIChE J., 29, p. 434 (1983).
[22] Solari R.B., Bell R.L., Fluid Flow Patterns and Velocity Distribution on Commercial-Scale Sieve Trays, AIChE J., 32, p. 640 (1986).
[23] Olujic Z., Jodecke M., Shilkin A., Schuch G., Kaibel B., Equipment Improvement Trends in Distillation, Chem. Eng. Process., 48, p. 1089 (2009).
[24] Brambilla A., The Effect of Vapor Mixing on Efficiency of Large-Diameter Distillation Plates, Chem. Eng. Sci., 31, p. 571 (1976).
[25] Zuiderweg F.J., Sieve Trays: A View on the State of the Art, Chem. Eng. Sci., 37, p. 1441 (1982).