Application of Percolation Theory in the Modeling of Catalyst Deactivation in a Fixed Bed Reactor of Methanol to Light Olefin Catalytic Conversion

Editorial

Authors

1 Department of Chemical Engineering, Faculty of Engineering, Persian Gulf University, Bushehr, I.R. IRAN

2 Faculty of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran,, I.R. IRAN

Abstract

A reactor model for prediction of the deactivation behavior of MTO’s porous catalyst in a fixed bed reactor is developed. Percolation theory was used to predict the effect of coking on molecular transport in the porous structure of SAPO-34.The predicted loss in catalyst activity with time-on-stream was in very good agreement with the experimental data. The resulting coke deposition along the length of reactor suggested a moving reaction front in thecatalyst bed of reactor at the operating experimental conditions of 1 h-1 and 723 K for methanol space velocity and inlet temperature, respectively. Effects of space time, coordination of model of porous network, and effective diffusivity of component in reaction mixture on the reactor performance are presented.  

Keywords

Main Subjects


 [1] روئیائی، سید جاوید؛ طالبی، گودرزغ سهرابی، مرتضی؛ دبیر، بهرام، ساخت زئولیت H-Beta برای مطالعه واکنش تبدیل متانول به الفین­های سبک، فصلنامه امیرکبیر، سال هجدهم، شماره 66، ص 12-5، (1386).
[2] Hereijgers B.P.C., Bleken F., Nilsen M.H., Svelle S., Lillerud K.P., Bjørgen M., Weckhuysen B.M., Olsbye U., Product Shape Selectivity Dominates the Methanol-to-Olefins (MTO) Reaction over H-SAPO-34 Catalysts, J. Catal., 264(1), p. 77 (2009).
[3] Park J.W., Kim S.J., Seo M., Kim S.Y., Sugi Y., Seo G., Product Selectivity and Catalytic Deactivation of MOR Zeolites with Different Acid Site Densities in Methanol-to-Olefin (MTO) Reactions, Appl. Catal., A., 349(1-2), p. 76 (2008).
[4] Park J.W., Lee J.Y., Kim K.S., Hong S.B., Seo G., Effects of Cage Shape and Size of 8-Membered Ring Molecular Sieves on Their Deactivation in Methanol-to-Olefin (MTO) Reactions, Appl. Catal., A, 339(1), p. 36 (2008).
[5] Izadbakhsh A., Farhadi F., Khorasheh F., Sahebdelfar S., Asadi M., Feng Y.Z., Effect of SAPO-34's Composition on Its Physico-Chemical Properties and Deactivation in MTO Process, Appl. Catal., A, 364(1-2), p. 48 (2009).
[6] Freiding J., Kraushaar-Czarnetzki B., Novel Extruded Fixed-Bed MTO Catalysts with High Olefin Selectivity and High Resistance Against Coke Deactivation, Appl. Catal., A, 391(1-2), p.254 (2011).
[7] Rene Bos A.N., Tromp P.J.J., Conversion of Methanol to Lower Olefins. Kinetic Modeling, Reactor Simulation, and Selection, Ind. Eng. Chem. Res., 34, p. 3808 (1995).
[8] Gayubo A.G., Aguayo A.T., Sa´nchez del Campo A. E., Tarrı´o A.M., Bilbao J., Kinetic Modeling of Methanol Transformation into Olefins on a SAPO-34 Catalyst, Ind. Eng. Chem. Res., 39, p. 292 (2000).
[9] Alwahabi S.M., Froment G.F., Conceptual Reactor Design for the Methanol-to-Olefins Process on SAPO-34, Ind. Eng. Chem. Res., 43(17), p. 5112 (2004).
[10] Chen D., Rebo H.P., Grønvol A., Moljord K., Holmen A., Methanol Conversion to Light Olefins Over SAPO-34: Kinetic Modeling of Coke Formation, Microporous Mesoporous Mater., 35–36, p. 121 (2000).
[11] Chen D., Grønvold A., Moljord K., Holmen A., Methanol Conversion to Light Olefins over SAPO-34: Reaction Network and Deactivation Kinetics, Ind. Eng. Chem. Res., 46, p. 4116 (2007).
[12] Mohanti K.K., Ottino J.M., Davis H.T., Reaction and Transport in Disordered Composite Media: Introduction of Percolation Concepts, Chem. Eng. Sci., 37 (6), p. 905 (1982).
[13] Sahimi M., Tsotsis T.T., A Percolation Model of Catalyst Deactivation with Site Coverage and Pore Blockage, J. Catal., 96, p. 552 (1985).
[14] Mann R., Sharatt P.N., Thomson G., Deactivation of a Supported Zeolite Catalyst: Diffusion, Reaction and Coke Deposition in Stochastic Pore Network, Chem. Eng. Sci., 41, p. 711 (1986).
[15] Beyne A.O.E., Froment G.F., A Percolation Approach for the Modeling of Deactivation of Zeolite Catalysts and Coke Formation, Chem. Eng. Sci., 45, p. 2089 (1990).
[16] Zhang L., Seaton N.A., Simulation of Catalyst Fouling at the pPrticle and Reactor Levels, Chem. Eng. Sci., 51, p. 3257 (1996).
[17] Dadvar M., Sahimi M., Pore Network Model of Deactivation of Immobilized Glucose Isomerase in Packed-Bed Reactors. II. Three-Dimensional Simulation at the Particle Level, Chem. Eng. Sci., 57, p. 939 (2002).
[18] Chen D., Rebo H.P., Holmen A., Diffusion and Deactivation During Methanol Conversion Over SAPO-34: A Percolation Approach, Chem. Eng. Sci., 54, p. 3465 (1999).
[19] Keil F.J., Diffusion and Reaction in Porous Networks, Catal. Today, 53 (2), p. 245 (1999).
[20] Mann R., Developments in Chemical-Reaction Engineering-Issues Relating to Particle Pore Structures and Porous Materials, Chem. Eng. Res. Des., 71 (A5), p. 551 (1993).
[21] Froment G.F., Modeling of Catalyst Deactivation, Appl. Catal., A, 212(1–2), p. 117 (2001).
[22] http://en.wikipedia.org/wiki/Percolation_theory.
[23] Kirkpatrick S., Percolation and Conduction, Rev. of Mod. Phys., 45 (1), p. 574 (1973).
[24] Reyes S., Jensen K.F., Estimation of Effective Transport Coefficients in Porous Solids Based on Percolation Concepts, Chem. Eng. Sci., 40 (9), p. 1723(1985).
[25] Vogelaar B.M., Berger R.J., Bezemer B., Janssens J-P, Langeveld A.D.V., Eijsbouts S., Moulijn J.A., Simulation of Coke and Metal Deposition in Catalyst Pellets Using a Non-Steady State Fixed Bed Reactor Model, Chem. Eng. Sci., 61, p. 7463 (2006).
[26] Tsai C.H., Massoth,F.E., Lee S.Y., Seader J.D., Effects of Solvent and Solute Configuration on Restrictive Diffusion in Hydrotreating Catalysts, Ind. Eng. Chem. Res., 30(1), p. 22 (1991).
[27] Soundararajan A.K., Dalai F., Berruti, Modeling of Methanol to Olefins (MTO) Process in a Circulating Fluidized Bed Reactor, Fuel, 80 (8), p. 1187 (2001).
[28] Post M.F.M., Diffusion in Zeolite Molecular Sieves, in: Introduction to Zeolite Science and Practice, van Bekkum H., Flanigen E.M., Jansen J.C., Stud. Surf. Sci. Catal., Elsevier, Amsterdam, 58, p. 391 (1991).
[29] Wakao N., Kaguei S., “Heat and Mass Transfer in Packed Beds”, Gordon and Breach Science, London, (1982).
[30] Weisz P. B., Zeolites-New Horizons in Catalysis, Chem. Tech., 3, p. 498 (1973).
[31] Chen N.Y., Degnan T.F., Jr., Smith C.M., Molecular Transport and Reaction in Zeolites-Design and Application of Shape Selective Catalysis, VCH Publishers, New York, (1994).
[32] Dahl I.M., Kolboe S., On the Rreaction Mechanism for Hydrocarbon Formation from Methanol Over SAPO-34. 1. Isotopic labeling Studies of the Co-Reaction of Ethene and Methanol, J. Catal., 149(2), p. 458 (1994).
[33] Dahl I.M., Kolboe S., On the Reaction Mechanism for Hydrocarbon Formation from Methanol Over SAPO-34. 2. Isotopic Labeling Studies of the Co-Reaction of Propene and Methanol, J. Catal., 161(1), p. 304 (1996).
[34] Song W., Haw J.F., Nicholas J.B., Heneghan C.S., Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34, J. Am. Chem. Soc., 122(43), p. 10726 (2000).
[35] Song D.M. Marcus Fu. H., Ehresmann J.O., Haw J.F., An Oft-Studied Reaction That May Never Have Been: Direct Catalytic Conversion of Methanol or Dimethyl Ether to Hydrocarbons on the Solid Acids HZSM-5 or HSAPO-34, J. Am. Chem. Soc., 124 (15), p. 3844 (2002).
[36] Sie S.T., Miniaturization of Hydroprocessing Catalyst Testing Systems: Theory and Practice, AIChE J., 42 (12), p. 3498 (1996).