Chemical Structure Elucidation of Populus deltoides MWL and EL Lignins

Document Type : Research Article

Authors

1 Department of Chemistry, Payame Noor University, Tehran, I.R. IRAN

2 Department of Wood and Paper, Faculty of Natural Resources, University of Tehran, Karaj, I.R. IRAN

Abstract

The structure of Enzymatic Lignin (EL) was elucidated and compared to conventional Milled Wood Lignin (MWL). The method was based on the hydrolysis and solubilization of wood xylan and cellulose using combination of xylanase, cellulase and glycosidase, followed by lignin purification using alkaline protease and extraction of lignin with dimethylacetamide (DMAc). The chemical structure of Enzymatic Lignin (EL) was elucidated and compared to conventional Milled Wood Lignin (MWL) using wet chemical analysis, FTIR and Quantative 13C NMR, GC/MS and degradative techniques. The results indicate the less degradation during EL degradation compared to MWL. Comparing to conventional enzymatic extraction procedures, using an enzymatic sequence with reduced milling time can ensure a relatively pure lignin with small structural changes. Analytical results showed that Popolus deltoides wood has a more 4-(3-hydroxy-1-propenyl)-2-methoxy phenol units (guayacil lignin) regarding to 4-(3-hydroxy-1-propenyl)-2,6-dimethoxy phenol units (syringyl moieties). The residual lignin is mainly composed of condensed structures which often are complexed with carbohydrates. Also, the enzymatic lignin structural analysis through GPC and GC revealed the less condensation structure regarding to MWL which is due to less degradation during isolation process.

Keywords

Main Subjects


 [1] ریاحی فر، ن؛ فلاح، ا ؛ محمدی سمانی،ک. و ی. گرجی مهلبانی، مقایسه رویش دو گونه صنوبر و پالونیا در فواصل کشت مختلف در شمال ایران. فصلنامه علمی پژوهشی تحقیقات جنگل و صنوبر ایران، (3) 33، ص 444-454، (1387).   
[2] دانشور، ح؛ مدیر رحمتی، ع, مقایسه رشد طولی، قطری و حجمی کلن­های مختلف صنوبر در استان اصفهان. فصلنامه علمی پژوهشی تحقیقات جنگل و صنوبر ایران، (1) 31، ص 49-60، (1387).
[3] Ikeda T., Holtman K., Kadla J., Chang H., Jameel H., Studies on the Effect of Ball Milling on Lignin Structure Using a Modified DFRC Method, J. Agric. Food Chem, 50(1), p. 12 (2002).
[4] Ralph J., Lundquist K., Brunow G., Lu, F., Kim H., Schatz P, Marita J., Hatfield R., Ralph S., Christensen J., Boerjan W., Lignins: Natural Polymers from Oxidative Coupling of 4-Hydroxyphenylpropanoids, Phytochemistry, 3(2), p. 29 (.2004).
[5] Bjorkman, A., Studies on Finely Divided Wood. Part I. Extraction of Lignin with Neutral Solvents, Svensk Papperstid, 59, p. 477 (1956).
[6] Argyropoulos D.S., Zhang L., Semiquantitative Determination of Quinonoid Structures in Isolated Lignins by 31P Nuclear Magnetic Resonance, Journal of Agricultural and Food Chemistrtry, 46 (11), p. 4634 (1998).
[7] Wang R., Chen C.-L., Gratzl J. S., Ozonation of Pine Kraft Lignin in Alkaline Solution. Part 1: Ozonation, Characterization of Kraft Lignin and Its Ozonated Preparations, Holzforschung, 58(6), p. 622 (2004).
[8] Argyropoulos D.S., Heitner C., Schmidt J.A., Observation of Quinonoid Groups during the Light-Induced Yellowing of Softwood Mechanical Pulp, Res. Chem. Intermediates, 21, p. 263 (1995).
[9] Chang H., Cowling E., Brown W., Comparative Studies on Cellulolytic Enzyme Lignin and Milled Lignin of Sweetgum and Spruce, Holzforschung, 29, p. 153 (1975).
[10] Walker L.P., Wilson D.B., Enzymatic Hydrolysis of Cellulose: An Overview, Bioresource Technology, 36(1), p. 3 (1991).
[11] Wu S., Argyropoulos D.S., An Improved Method for Isolating Lignin in High Yield and Purity, J. Pulp Pap. Sci., 29, p. 235 (2003).
[12] Holtman K., Chang, Solution-State Nuclear Magnetic Resonance Study of the Similarities Between Milled Wood Lignin and Cellulolytic Enzyme Lignin, J. Agric. Food Chem., 52,  p. 720 (2004).
[13] Abdulkhani A., Karimi A., Mirshokraie A.,2 Hamzeh Y., Marlin N.,3 Mortha G., Journal of Applied Polymer Science, 118, p. 469 (2010).
[14] Lu F., Ralph J., Reactions of Lignin Model Beta-Aryl Ethers with Acetyl Bromide, Holzforschung, 50, p. 360 (1996).
[15] Blakeney A.B., Harris P.J., Henry R.J., Stone B.A., A simple and Rapid Preparation of Alditol Acetates for Monosaccharide Analysis, Carbohydr. Res., 113, p. 291(1983).
[16] Guerra A., Lucia L.A., Argyropoulos D.S., Isolation and Characterization of Llignins from Eucalyptus Grandis Hill ex Maiden and Eucalyptus globulus Labill. by Enzymatic Mild Acidolysis (EMAL), Holzforschung, 62(1), p. 24 (2008).
[17] Hu M., Zhang W., Wu Y., Gao P., Lu X., Characteristics and Function of a Low-Molecular-Weight Compound with Reductive Activity from Phanerochaete chrysosporium in Lignin Biodegradation, Bioresource Technology, 100(6), p. 2077 (2009).
[18] Faix O., Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy, Holzforschung, 45 (Suppl.), p. 21 (1991).
[19] del Rio J.C., Gutierrez A., Rodriguez I.M., Ibarra D., Martinez A.T., Composition of Non-Woody Plant Lignins and Cinnamic Acids by Py-GC/MS, Py/TMAH and FT-IR, J. Anal. Appl. Pyrolysis, 79, p. 39 (2007).
[20] Sarkanen, K.V., "Precursors and Their Polymerization", Wiley-Interscience: New York, (1971).
[21] Rencoret J., Gutirrez A., Del Rio J.C., Lipid and Lignin Composition of Woods from Different Eucalypt Species, Holzforschung, 61(2), p. 165 (2007).
[22] Sarkanen K.V., Chang H.M., Allan G.G., Species Variation in Lignins. 2. Conifer Lignins, Tappi J., 50, p. 583 (1967).