Prediction of Oxygen Solubility in Organic Solvents Using Artificial Neural Networks

Document Type : Research Note


1 Department of Chemical Engineering, Faculty of Chemistry, University of Tabriz, Tabriz, I.R. IRAN

2 Eivan-e-Gharb Branch, Islamic Azad University, Eivan-e-Gharb, Ilam, I.R. IRAN


In this paper, solubility of oxygen in organic solvents has been estimated using Artificial Neural Networks (ANN). Solubility data were studied for wide ranges of temperature (298.2-348.29 K) and pressure (0.0535 to 9.2338 MPa). Solvents are included of methanol, n-propanol, octane, toluene, dibutyl ether and 2-methyltetrahydrofuran. Network model consists of four inputs in input layer for acentric factor, molecular weight, TR and PR of the system and one neuron in output layer corresponding to solubility of oxygen. The best structure for feed-forward back propagation neural network is logarithmic sigmoid transfer function for hidden layer, 13 neurons in this layer and linear transfer function for output layer. Results show that optimum neural network architecture is able to predict the solubility of oxygen in organic solvents with an acceptable level of accuracy, R2 of 0.999997, ARD % of 0.8103 and AAD% of 0.0042. Sensitivity analysis shows that TR has the greatest effect on the solubility of oxygen.


Main Subjects

[1] Guimaraes P.R.B., McGreavy, C., Flow of Information through an Artificial Neural Network, Comput. Chem. Eng., 19, p. 741 (1991).
[2] Sharma R., Singhal D., Ghosh R., Dwivedi A., Potential Applications of Artificial Neural Networks to Thermodynamics: Vapour-Liquid Equilibrium Predictions, Comput. Chem. Eng., 23, p. 385 (1999).
[3] Lashkarbolooki M., Shafipour Z., Zeinolabedini A., Farmani H., Use of Artificial Neural Networks for Prediction of Phase Equilibria in the Binary System Containing Carbon Dioxide, Journal of Supercritical Fluids, 75, p.144 (2013)
[5] Potukuchi W., Wexler A.S., Predicting Vapor Pressures Using Neural Networks, Atmos. Environ., 31, p. 741 (1997).
[6] Shyam S.S., Oon-Doo B., Michele M., Neural Networks for Predicting Thermal Conductivity of Bakery Products, J. Food Eng., 52, p. 299 (2002).
[10] Dias A.M.A., Freire M., Coutinho J.A.P., Marrucho I.M., Solubility of Oxygen in Liquid Perfluorocarbons, Fluid Phase Equilibria, 222, p. 325 (2004).
[11] Tan Z., Gao G.H., Yu Y.X.,Gu C., Solubility of Oxygen in Aqueous Sodium Carbonate Solution at Pressures up to 10 MPa, Fluid Phase Equilibria, 180, p. 375 (2001).
[12] Parker, R.,Whitcombe, M. J., Ring, S. G., Oxygen Solubility and Permeability of Carbohydrates, Carbohydrate Research, 340, p. 1523 (2005).
[13] Kaskiala T., Determination of Oxygen Solubility in Aqueous Sulphuric Acid Media, Minerals Engineering, 15, p. 853 (2002).
[14] Merker T., Vrabec J., Hasse H., Gas Solubility of Carbon Dioxide and of Oxygen in Cyclohexanol by Experiment and Molecular Simulation, The Journal of Chemical Thermodynamics, 49, p. 114 (2012).
[15] Safamirzaei M., Modarress H., Solubility of Oxygen in the Ionic Liquid [bmim][PF6]: Experimental and Molecular Simulation Results, ThermochimicaActa, 545, p. 125 (2012).
[16] حسن آبادی، مرتضی، طراحی شبکه عصبی برای بهینه سازی اندازه سطح مقطع شیرهای درون چاهی با اندازه ثابت در چاه هوشمند، نشریه شیمی و مهندسی شیمی ایران، (2)31، ص. 55 (1391).
[17] Perry, D. Green (Eds.), “Perry's Chemical Engineers Handbook”, 7th Edition, McGraw-Hill, New York, (1997).
[19] Safamirzaei M., Modarress H., Correlating and Predicting Low Pressure Solubility of Gases in [bmim][BF4] by Neural Network Molecular Modeling, ThermochimicaActa, 545, p. 125 (2012).
[20] Garson, G.D., “Interpreting Neural-Network Connection Weights”, AI Expert, 6, p. 46 (1991).