Study of Interaction of Mustard Gas on (4,0), (5,0) and (6,0) Zig-Zag Aluminum-Nitride Nanotubes

Document Type : Research Article


1 Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, I.R. IRAN

2 Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, I.R. IRAN


In order to find a suitable sensitivity sensor for Mustard molecule as blistering agent, we studied the adsorption behavior of MU molecule on the exterior surface of (4,0), (5,0) and (6,0) zigzag Aluminum-Nitride Nanotubes (AlNNTs) by used of Density Functional Theory (DFT) calculations. Geometry optimizations were carried out at B3LYP/6-311G** level of theory.The equilibrium distances, adsorption energy, Dipole moment and energies of the Highest-Occupied Molecular Orbital (HOMO) as well as the Lowest-Unoccupied Molecular Orbital (LUMO) were calculated for the adsorption process of MU molecule on the aluminum-nitride nanotubes. Results show that the adsorption energy and the electronic properties of the AlNNTs depend on the AlNNTs diameter and orientation of the MU molecule outside the tube. The adsorption energies and equilibrium distances show that the 40S configuration (Sulfur atom of MU molecule is situated above a aluminum atom of (4,0) AlNNT) is most favorable. The quite small values of electron transfer (ΔN) and the slight effect of MU molecule adsorption near the Fermi level in DOS of (4,0) AlNNT shows an inconsiderable amount of electron transfer between the MU molecule and AlNNTs in the adsorption process.


Main Subjects

1]  SidellF.R., Borak J.,Chemical Warfare Agents: II. Nerve Agents, Ann. Emerg. Med.,21(7): 865-871 (1992).
[2]    Newmark J.,Nerve Agents, Neurologist,13(1):20-32 (2007).
[3]  Russell A.J., Berberich J.A., Drevon G.F., Koepsel R.R., Biomaterials for Mediation of Chemical and Biological Warfare Agents, Annu. Rev. Biomed. Eng.,5: 1-27 (2003).
[4]    Somani S.M., "Chemical Warfare Agents", Academic Press, London, (1992).
[5]  Seto Y., Kanamori-Kataoka M., Tsuge K., Ohsawa I., Matsushita K., Sekiguchi H.,Itoi T., Iura K., Sano Y., Yamashiro S.,Sensing Technology for Chemical Warfare Agents and Its Evaluation Using Authentic Agents, Sens. Actuators B.,108(1-2): 193-197 (2005).
[7] Stewart C.E., Sullivan Jr. J.B., in: Sullivan Jr. J.B., Krieger G.R. (Eds.), "Hazardous Materials Toxicology e Clinical Principles of Environmental Health", Williamsand Wilkins, Baltimore, (1992).
[8] Bismuth C., Borron S.W., Baud F.J., Barriot P., Chemical Weapons: Documented Use and Compounds on the Horizon, Toxicol. Lett.,149(1-3):11-18(2004).
[9] Fischer. Schattkowsky K., Martina. ed (in German). Steinkopf, Georg Wilhelm, in: "Sächsische Biografie" (Online ed.). Institut für Sächsische Geschichte und Volkskunde(2004).
[10] McGill R.A., Nguyen V.K., Chung R., Shaffer R.E., DiLella D., Stepnowski J.L.,Mlsna T.E., Venezky D.L., Dominguez D.,The 'NRL-SAWRHINO': a Nose for Toxic Gases, Sens. Actuators B.,65: 10-13 (2000).
[11] Marenco A.J., "Electrochemical Detection of Chemical Warfare Agent Simulants", University of Saskatchewan, Thesis, (2009).
[12] Collins P.G., Bradley K., Ishigami M., Zettl A., Extreme Oxygen Sensitivity of Electronic Properties of  Carbon Nanotubes, Science, 287:1801-1804 (2000).
[13] Kim Y., Lee S., Choi H.H., Noh J.S., Lee W., Detection of a Nerve Agent Simulant Using Single-Walled Carbon Nanotube Networks: Dimethyl-Methyl- Phosphonate, Nanotechnology, 21: 495501(5pp) (2010).
[14] Wang Y.Y., Yang Z., Hou Z.Y., Xu D., Wei L.M., Kong ES W., Zhang Y.F., Flexible Gas Sensors with Assembled Carbon Nanotube Thin Films for DMMP Vapor Detection, Sensors and Actuators B.,150(2): 708–714 (2010).
[15] Wei C., Dai L., Roy A., Tolle T.B., Multifunctional Chemical Vapor Sensors of Aligned Carbon Nanotube and Polymer Composites, J. Am. Chem. Soc.,128(5):1412-1413 (2006).
[12] Horrillo M.C., Martí J., Matatagui D., Santos J.P., Sayago I., Gutiérrez J., Ivanov P., Gràcia I., Cané C., Martin-Fernandez I., Single-Walled Carbon Nanotube Microsensors for Nerve Agent Simulant Detection, Sensors and Actuators B: Chemical, 157(1):253-259 (2011).
[18] Cattanach K., Kulkarni R.D., Kozlov M., Manohar S.K., Flexible Carbon Nanotube Sensors for Nerve Agent Stimulants, Nanotechnology,17(16): 4123-4128 (2006).
[19] Wang F., Gu H., Swager T.M., Carbon Nanotube/Polythiophene Chemiresistive Sensors for Shemical Warfare Agents, J. Am. Chem. Soc.,130(16):5392-5393 (2008).
[20] Lee C.Y., Baik S., Zhang J.Q., Masel R.I., Strano M.S., Charge Transfer from Metallic Single-Walled Carbon Nanotube Sensor Arrays, J. Phys. Chem. B., 110(23):11055-11061 (2006).
[21] Joshi K.A., Tang J., Haddon R., Wang J., Chen W., Mulchandani A., A Disposable Diosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode, Electroanalysis,17(1): 54-58 (2005).
[22] Ganji M.D., Tajbakhsh M., Laffafchy M., Nerve Agents Interacting with Single Wall Carbon Nanotubes: Density Functional Calculations, Solid State Sci.,12(9): (2010) 1547-1553.
[23] Ahmadian N., Ganji M.D., Laffafchy M., Theoretical Investigation of Nerve Agent DMMP Adsorption Onto Stonee Wales Defected Single-Walled Carbon Nanotube, Materials Chemistry and Physics, 135(2-3): (2012) 569-574.
[24] Schroten E., Goossens A., Schoonman J., Photo- and Electroreflectance of Cubic Boron Phosphide, J. Appl. Phys.,83(3):1660-1663(1998).
[25] Ferreira V.A., Leite Alves H.W.,Boron Phosphide as the Buffer-Layer for the Epitaxial III-Nitride Growth: A Theoretical Study, J. Cryst. Growth.,310(17):3973-3978 (2008).
[26] Wu Q., Hu, X Z.. Wang, Lu Y., Chen X., Xu H., Chen Y.,Synthesis and Characterization of Faceted Hexagonal. Aluminum Nitride Nanotubes, J. Am. Chem. Soc.,125(34):10176-10177(2003).
[27] Tang C., Bando Y., Yue C., Gu C., Xu F.F.G.,Fluoridation and Electrical Conductivity of BN Nanotubes, Am.Chem.Soc., 127(18): 6552-6553 (2005).
[29] Parr R.G., Szentpaly L., Liu S.,Electrophilicity Index, J. Am. Chem. Soc.,121(9):1922-1924 (1999).
[30] Frisch M. J., Trucks G. W., Schlegel H. B., et al., "Gaussian 98", Gaussian, Pittsburgh, Pa, USA, (1998).