ProdPreparation and Characterization of Ag/Zn-TiO2 Nanoparticles by Different Methods and Investigation the Effect of Synthesis Method on the Photocatalytic Activity of Ag/Zn-TiO2 Nanoparticles

Document Type : Research Article


epartment of Chemistry, Payam Noor University, P.O. Box 19395-3697 Tehran, I.R. IRAN


Ag/Zn-TiO2 nanoparticles with various ratio moles were synthesized via two different methods: sol-gel and hydrothermal. The prepared samples were characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray (EDX) spectroscopy,N2 adsorption-desorption isotherm, and Brunauer-Emmett-Teller (BET) analysis methods. Also,the influence of synthesis method on the crystalline structure, crystal size, surface area and photocatalytic activity of synthesized nanoparticles were investigated. Photocatalytic activity of prepared nanoparticles was investigated by photocatalytic removal of Methyl Orange (MO) under black light irradiation. Ag/Zn-TiO2 nanoparticles synthesized by hydrothermal method showed high photocatalytic activity during removal of methyl orange due to having pure anatase phase, an increase in the specific surface area, total pore volume, and the decrease in the crystallite size and agglomeration.


Main Subjects

[2] Sheikhnejad-Bishe O., Zhao F., Rajabtabar-Darvishi A., Khodadad E., Mostofizadeh A., Huang Y., Influence of Temperature and Surfactant on the Photocatalytic Performance of TiO2 NanoparticlesInt. J. Electrochem. Sci., 9: 4230-4240 (2014).
[3] صفائی، مریم؛ روش تهیه، مکانیسم رشد و کاربرد نانولوله های تیتانیا/تیتانیاتی، نشریه شیمی و مهندسی شیمی ایران، 78: 1 تا  22 (1394).
[4] Mohammadi R., Eskandarloo H., Mohammadi M.,  Application of Artificial Nneural Network (ANN) for Modeling of Dyes Decolorization by Sn/Zn-TiO2 Nanoparticles, Desal. Wat. Treat., 55: 1922-1933 (2015).
[6] Nguyen T.B., Hwang M.J., Ryu K.S., Synthesis and High Photocatalytic Activity of Zn-doped TiO2 Nanoparticles by Sol-gel and Ammonia-Evaporation Method, Bull. Korean Chem. Soc., 33: 243-247 (2012).
[7] Thanh-Binh N., Dubois J.L., Kaliaguine S., Ammoxidation of Acrolein to Acrylonitrile Over Bismuth Molybdate Catalysts, Appl. Catal. A: General, 520: 7-12 (2016).
[10] Lee K.M., Suryanarayanan V., Ho K.C., Influences of Different TiO2 Morphologies and Solvents on the Photovoltaic Performance of Dye-Sensitized Solar Cells, J. Power Sources., 188: 635-641 (2009).
[11] Wu C.T., Chen P.Y., Chen J.G., Suryanarayanan V., Ho K.C., Detection of Nicotine Based on Molecularly Imprinted TiO2-Modified Electrodes, Anal. Chimica. Acta., 633, 119-126 (2009).
[13]  Padmesh T.V.N., Vijayarghavan K., Sekaran G., Velan M., Batch and Column Studies on Biosorption of Acid Dyes on Fresh Water Macro Alga Azolla Filiculoides, J. Hazard. Mater. B, 125: 121-129 (2005).
[15] Sharma R., Shaw R., Tiwari S., Tiwari S., Nano-Titania Decorated Fly Ash as Self-Cleaning Antibacterial Cool Pigment, ACS. Sust. Chem. Eng., 3: 2796-2803 (2015).
[16] Lu D., Zhang M., Zhang Z., Li Q., Wang X., Yang J., Self-Organized Vanadium and Nitrogen co-Doped Titania Nanotube Arrays with Enhanced Photocatalytic Reduction of CO2 Into CH4,  Nanoscale. Res. Let., 9:272-281 (2014).
[17]  Madhusudan P., Zhang J., Cheng B., Liu G., Photocatalytic Degradation of Organic Dyes with Hierarchical Bi2O2 CO3 Microstructures under Visible-Light, Cryst. Eng. Comm., 15: 231-240 (2013).
[20]  Nolan N.T., Seery M.K., Pillai S.C., Crystallization and Phase-Transition Characteristics of Sol-Gel-Synthesized Zinc Titanates, Chem. Mater., 23: 1496-1504 (2011).
[21] Mohammadi R., Massoumi B., Sn/Cu-TiO2 Nanoparticles Produced via Sol-Gel Method: Synthesis, Characterization, and Photocatalytic Activity, Russ. J. Phys. Chem. A, 88: 1184-1190 (2014).
[22] Seery M. K., George R., Floris P., Pillai S. C., Silver Doped Titanium Dioxide Nanomaterials for Enhanced Visible Light Photocatalysis, J. Photochem. Photobiol. A: Chem., 189: 258-263 (2007).
[23] Georgekutty R., Seery M. K., Pillai S. C., A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties, and Mechanismb, J. Phys. Chem. C, 112: 13563-13570 (2008).
[24] Natarajan T.S., Bajaj H.C., Tayade R.J., Preferential Adsorption Behavior of Methylene blue Dye onto Surface Hydroxyl Group Enriched TiO2 Nanotube and Its Photocatalytic Regeneration, J. Colloid. Interface. Sci., 433: 104-114 (2014).
[25] Zhu L. P., Xiao H. M., Zhang W. D., Yang G., Fu S. Y., One-Pot Template-Free Synthesis of Monodisperse and Single-Crystal Magnetite Hollow Spheres by a Simple Solvothermal Route, Cryst. Growth. Design, 8: 957–963 (2008).
[26] Tayade R. J., Kulkarni R. G., Jasra R. V., Photocatalytic Degradation of Aqueous Nitrobenzene by Nanocrystalline TiO2, Ind. Eng. Chem. Res, 45: 922-927 (2006).
[27] Riaz N., Chong F. K., Dutta B. K., Man Z. B., Khan M. S., Photodegradation of Orange II under Visible Light Using Cu–Ni/TiO2: Effect of Calcination Temperature, Nuraela E.,Chem. Eng. J., 185: 108-119 (2012).
[28] Natarajan T.S., Natarajan K., Bajaj H.C., Tayade R.J., Enhanced Photocatalytic Activity of Bismuth-doped TiO2 Nanotubes under Direct Sunlight Irradiation for Degradation of Rhodamine B Dye, J. Nanoparticle. Res, 15: 1669-1686 (2013).
[29] Sobana N., Muruganadham M., Swaminathan M., Nano-Ag Particles Doped TiO2 for Efficient Photodegradation of Direct Azo Dyes, J. Molecul. Catal. A: Chem, 258: 124-132 (2006).
[32] Parra R., Ramajo L.A., Goes M.S., Varela G.A., Castro M.S., From Tin Oxalate to (Fe, Co, Nb)-Doped SnO2: Sintering Behavior, Microstructural and Electrical Features, Mater. Res. Bulletin, 43: 3202-3211 (2008).
[33]احمدی اسب چین، سلمان؛ مقایسه مطالعه سینتیکی و هم دمای جذب زیستی نیکل به وسیله باکتری و جلبک های قرمز و قهوه ای، نشریه شیمی و مهندسی شیمی ایران، 77: 41 تا 48 (1394)
[35] Mohammadi R., Massoumi B., Eskandarloo H., Preparation and Characterization of Sn/Zn/TiO2 Photocatalyst for Enhanced Amoxicillin Trihydrate Degradation, Desal. Wat. Treat., 53: 1995-2004  (2015).