Comparative Study of Zinc Metal Removal using Crude and Modified Spirulina Microalgae by Magnetic Nano Adsorbent

Document Type : Research Article

Authors

Department of Chemical Engineering, Faculty of Engineering, University of Guilan, Rasht, I.R. IRAN

Abstract

In this research, adsorption of Zinc ion was investigated at batch system using spirulina microalgae and Magnetic microalgae. The effect of important parameters such as pH of the solution, absorbent contact time, the initial concentration of Zn(II) ion, adsorbent dosage and temperature were investigated on The removal efficiency and  adsorption capacity. Also adsorbent features were studied by using SEM photographs and FT-IR spectroscopy. The maximum Zinc ion adsorption occurred in pH=6. The optimum adsorbent dosages were determined 0.03 g for spirulina microalgae and Magnetic microalgae. So at optimum pH and adsorbents dosage for 150 mg/l initial zinc ion concentration 84.43% and 96.56% of removal efficiency was obtained for spirulina microalgae and Magnetic microalgae, respectively. Removal efficiency increased by increasing contact time between adsorbent and solution and after passing 10 min for spirulina microalgae and Magnetic microalgae reached to equilibrium. Examining kinetic models showed that pseudo-second order kinetic model had best fit for adsorbents. In investigating Zinc ion initial concentration in range of 50-300 mg/l, results showed by increasing initial concentration, efficiency decreased. Also experimental data of spirulina microalgae and Magnetic microalgae solutions had best fit by sips and Langmuir, respectively. Investigating temperature effect showed, by increasing temperature, removal efficiency decreased for spirulina microalgae and Magnetic microalgae. The thermodynamic parameter was studied in 298, 303, 313 and 323 Kelvin.

Keywords

Main Subjects


[1] Malamis S., Katsou E., Haralambous K.J., Study of Ni (II), Cu (II), Pb (II), and Zn (II) Removal Using Sludge and Minerals Followed by MF/UF, Water, Air, & Soil Pollution, 218(1-4): 81-92, (2011).
[3] Farooq U., Kozinski J.A., Khan M.A., Athar M., Biosorption of Heavy Metal Ions Using Wheat based Biosorbents–A Review of the Recent Literature, Bioresource Technology, 101(14): 5043-5053, (2010).
[4] قنادزاده گیلانی ح.، معصومی ح.، حقیقی پور ث.، بررسی جذب سطحی فسفریک اسید از محیط آبی توسط جاذب‌های طبیعی، نشریه شیمی و مهندسی شیمی ایران، (1)41: 175 تا 192 (1401).
[5] معصومی ح.، ردایی س.، قنادزاده گیلانی ح.، بررسی کارایی زئولیت کلینوپتیلولیت طبیعی در حذف منیزیم از محلول‌های آبی، نشریه شیمی و مهندسی شیمی ایران، (4)40: 55 تا 73 (1400).
[6] Saravanane R., Sundararajan T., Reddy S.S., Chemically Modified Low Cost Treatment for Heavy Metal Effluent Management, Environmental Management and Health, 12(2): 215-224 (2001).
[7] Erdem E., Karapinar N., Donat R., The Removal of Heavy Metal Cations by Natural Zeolites, Journal of Colloid and Interface Science, 280(2): 309-314 (2004).
[8] معصومی ح.، قنادزاده گیلانی ح.، اثر نمک‌های فسفات در استخراج اسید مالیک توسط سامانه دو فازی آبی، نشریه شیمی و مهندسی شیمی ایران، (4)39: 167 تا 175 (1399).
[9] Matlock M.M., Howerton B.S., Atwood D.A., Chemical Precipitation of Heavy Metals from Acid Mine Drainage, Water Research, 36(19): 4757-4764 (2002).
[10] Hunsom M., Pruksathorn K., Damronglerd S., Vergnes H., Duverneuil P., Electrochemical Treatment of Heavy Metals (Cu2+, Cr6+, Ni2+) from Industrial Effluent and Modeling of Copper Reduction, Water Research, 39(4): 610-616 (2005).
[11] Maturana H.A., Perič I.M., Rivas B.L., Pooley S.A., Interaction of Heavy Metal Ions with an Ion Exchange Resin Obtained from a Natural Polyelectrolyte, Polymer Bulletin, 67(4): 669-676 (2011).
[12] Juang R.-S., Huang H.-L., Mechanistic Analysis of Solvent Extraction of Heavy Metals in Membrane Contactors, Journal of Membrane Science, 213(1-2): 125-135 (2003).
[13] Chen S., Chen W., Shih C., Heavy Metal Removal from Wastewater using Zero-Valent Iron Nanoparticles, Water Science and Technology, 58(10): 1947-1954 (2008).
[14] Muthukrishnan M., Guha B., Heavy Metal Separation by using Surface Modified Nanofiltration Membrane, Desalination, 200(1-3): 351-353 (2006).
[16] Sepehrian H., Ahmadi S., Waqif-Husain S., Faghihian H., Alighanbari H., Adsorption Studies of Heavy Metal Ions on Mesoporous Aluminosilicate, Novel Cation Exchanger, Journal of Hazardous Materials, 176(1-3): 252-256 (2010).
[17] Shin K.-Y., Hong J.-Y., Jang J., Heavy Metal Ion Adsorption Behavior in Nitrogen-Doped Magnetic Carbon Nanoparticles: Isotherms and Kinetic Study, Journal of Hazardous Materials, 190(1-3): 36-44 (2011).
[18] Shen L., et al., A high-Efficiency Fe2O3@ Microalgae Composite for Heavy Metal Removal from Aqueous Solution, Journal of Water Process Engineering, 33: 101026 (2020).
[20] Shao W., Ebaid R., Abomohra A. E.-F., Shahen M., Enhancement of Spirulina Biomass Production and Cadmium Biosorption using Combined Static Magnetic Field, Bioresource Technology, 265: 163-169 (2018).
[21] Javadian H., Ahmadi M., Ghiasvand M., Kahrizi S., Katal R., Removal of Cr (VI) by Modified Brown Algae Sargassum Bevanom from Aqueous Solution and Industrial Wastewater, Journal of the Taiwan Institute of Chemical Engineers, 44(6): 977-989 (2013).
[22] Kumar P., Mahato D.K., Kamle M., Mohanta T.K., Kang S.G., Aflatoxins: A Global Concern for Food Safety, Human Health and their Management, Frontiers in Microbiology, 7: 02170 (2017).
[23] Wolters K., ''Agent Facts'', St. Louis MO: Health INC, California, (2012).
[25] Huang S.-H., Chen D.-H., Rapid Removal of Heavy Metal Cations and Anions from Aqueous Solutions by an Amino-Functionalized Magnetic Nano-Adsorbent, Journal of Hazardous Materials, 163(1): 174-179 (2009).
[26] Faghihian H., Moayed M., Firooz A., Iravani M., Synthesis of a Novel Magnetic Zeolite Nanocomposite for Removal of Cs+ and Sr2+ from Aqueous Solution: Kinetic, Equilibrium, and Thermodynamic Studies, Journal of Colloid and Interface Science, 393: 445-451 (2013).
[27] Huang Y., Ma X., Liang G., Yan H., Adsorption of Phenol with Modified Rectorite from Aqueous Solution, Chemical Engineering Journal, 141(1-3): 1-8 (2008).
[28] Chaouati N., Soualah A., Chater M., Adsorption of PHenol from Aqueous Solution onto Zeolites Y Modified by Silylation, Comptes Rendus Chimie, 16(3): 222-228 (2013).
[29] Kaşgöz H., Durmuş A., Kaşgöz A., Enhanced Swelling and Adsorption Properties of AAm‐AMPSNa/clay Hydrogel Nanocomposites for Heavy Metal Ion Removal, Polymers for Advanced Technologies, 19(3): 213-220 (2008).
[31] سلیمی بنی س.، کوهی دهکردی م.، "کاربرد ریزجلبک‌ها در بیوتکنولوژیدومین همایش بین‌المللی و پنجمین همایش ملی پژوهشهای محیط زیست و کشاورزی ایران، (1394).
[32] Bates S.S., Tessier A., Campbell P.G., Buffle J., Zinc Adsorption and Transport by Chlamydomonas Varuiabilis and Scenedesmus Subspicatus (ChloropHyceae) Grown in Semicontinuous Culture 1, Journal of Phycology, 18(4): 521-529 (1982).
[33] Liu Q.-S., Zheng T., Wang P., Jiang J.-P., Li N., Adsorption Isotherm, Kinetic and Mechanism Studies of some Substituted PHenols on Activated Carbon Fibers, Chemical Engineering Journal, 157(2-3): 348-356 (2010).
[34] Yao Y., Xu F., Chen M., Xu Z., Zhu Z., Adsorption Behavior of Methylene Blue on Carbon Nanotubes, Bioresource Technology, 101(9): 3040-3046 (2010).
[35] Renault F., Morin-Crini N., Gimbert F., Badot P.-M., Crini G., Cationized Starch-based Material as a New Ion-Exchanger Adsorbent for the Removal of CI Acid Blue 25 from Aqueous Solutions, Bioresource Technology, 99(16): 7573-7586 (2008).
[36] Yuh-Shan H., Citation Review of Lagergren Kinetic Rate Equation on Adsorption Reactions, Scientometrics, 599(1): 171-177 (2004).
[37] Wu F.-C., Tseng R.-L., Huang S.-C., Juang R.-S., Characteristics of Pseudo-Second-Order Kinetic Model for Liquid-PHase Adsorption: a Mini-Review, Chemical Engineering Journal, 151(1-3): 1-9 (2009).