Investigation of Mechanical and Thermal Properties of Graphene Oxide/ Octa(Aminophenyl) Polyhedral Oligomeric Silsesquioxane Hybrid Aerogels

Document Type : Research Article


a Institute of Polymeric Materials, Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, 5331817634, Iran


In this paper, the mechanical properties, thermal conductivity, and thermal stability of graphene oxide/octa(aminophenyl) polyhedral oligomeric silsesquioxane hybrid aerogels with high porosity, high surface area, and ultra-low density were investigated. The combination of properties such as high surface area and porosity, and extremely low density and thermal conductivity have made these aerogels as a great candidate in a wide range of applications including energy storage and conversion devices (like supercapacitors, electrode materials etc.), contaminant absorbers, and thermal insulation. The mechanical properties and thermal stability of the prepared aerogels showed a significant improvement compared to the reported graphene aerogels. Investigation of the thermal conductivity results of the obtained aerogels showed that the contribution of heat transfer through the solid phase, λs, is superior to other heat transfer mechanisms. This superiority is maintained even at higher temperatures. This is attributed to the high self-extinction coefficient of graphene aerogels, which heat transfer through radiation is effectively suppressed. Likewise, the lower average pore size of the obtained aerogels, limits the mean free path of gas molecules at high temperature and thereby reduces the contribution of gas thermal conductivity. Since these aerogels have porosity of above 99.5%, the contribution of solid phase thermal conductivity was also very low. Finally, the influence of raw material content, density and morphology on mechanical properties, thermal stability, and thermal conductivity was investigated and the structure-properties relationship of the prepared aerogels was explained.


Main Subjects

[1] Chen D., Feng H., Li J., Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications, Chemical Reviews, 112(11): 6027-6053 (2012).
[2] Boehm H.-P., Graphene—How a Laboratory Curiosity Suddenly Became Extremely Interesting, Angewandte Chemie International Edition, 49(49): 9332-9335 (2010).
[3] Lee C., Wei X., Kysar J.W., Hone J,.Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321(5887): 385 (2008).
[4] Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C.N., Superior Thermal Conductivity of Single-Layer Graphene, Nano Letters, 8(3): 902-907 (2008).
[5] Zhang Y., Zhang L., Zhang G., Li H., Naturally Dried Graphene-Based Nanocomposite Aerogels with Exceptional Elasticity and High Electrical Conductivity, ACS Applied Materials & Interfaces  (2018).
[6] Nardecchia S., Carriazo D., Ferrer M.L., Gutierrez M.C., del Monte F., Three Dimensional Macroporous Architectures and Aerogels Built of Carbon Nanotubes and/or Graphene: Synthesis and Applications, Chemical Society Reviews, 42(2): 794-830 (2013).
[7] Sun H., Xu Z., Gao C., Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels, Advanced Materials, 25(18): 2554-2560 (2013).
[8] Mao J., Iocozzia J., Huang J., Meng K., Lai Y., Lin Z., Graphene Aerogels for Efficient Energy Storage and Conversion, Energy & Environmental Science, 11(4): 772-799 (2018).
[9] Wu H., Wang Z.-M., Kumagai A., Endo T., Amphiphilic Cellulose Nanofiber-Interwoven Graphene Aerogel Monolith for Dyes and Silicon Oil Removal, Composites Science and Technology, 171: 190-198 (2019).
[10] Szczęśniak B., Choma J., Jaroniec M., Effect of Graphene Oxide on the Adsorption Properties of Ordered Mesoporous Carbons Toward H2, C6H6, CH4 and CO2, Microporous and Mesoporous Materials, 261: 105-110 (2018).
[11] Xie Z., Zhu J., Bi Y., Ren H., Chen X., Yu H., Nitrogen-Doped Porous Graphene-Based Aerogels toward Efficient Heavy Metal Ion Adsorption and Supercapacitor Applications, Physica Status Solidi (RRL) – Rapid Research Letters, 14(1): 1900534 (2020).
[12] Pan E., Jin Y., Wang Y., Zhao C., Bo X., Jia M., Facile Synthesis of Mesoporous 3D CoO/Nitrogen-Doped Graphene Aerogel as High-Performance Anode Materials for Lithium Storage, Microporous and Mesoporous Materials, 267: 93-99 (2018).
[13] Dong X., Wei Y., Chen S., Lin Y., Liu L., Li J., A Linear and Large-Range Pressure Sensor Based on a Graphene/Silver Nanowires Nanobiocomposites Network and a Hierarchical Structural Sponge, Composites Science and Technology, 155: 108-116 (2018).
[14] Hosseini H., Kokabi M., Mousavi S.M., BC/rGO Conductive Nanocomposite Aerogel as a Strain Sensor, Polymer, 137: 82-96 (2018).
[16] Huang W., Sun H., Shangguan H., Cao X., Xiao X., Shen F., Mølhave K., Ci L., Si P., Zhang J., Three-Dimensional Iron Sulfide-Carbon Interlocked Graphene Composites for High-Performance Sodium-Ion Storage, Nanoscale, 10(16): 7851-7859 (2018).
[17] Pottathara Y.B., Bobnar V., Finšgar M., Grohens Y., Thomas S., Kokol V., Cellulose Nanofibrils-Reduced Graphene Oxide Xerogels and Cryogels for Dielectric and Electrochemical Storage Applications, Polymer, 147: 260-270 (2018).
[18] Vrettos K., Angelopoulou P., Papavasiliou J., Avgouropoulos G., Georgakilas V., Sulfur-Doped Graphene Aerogels Reinforced with Carbon Fibers as Electrode Materials, Journal of Materials Science, 55(23): 9676-9685 (2020).
[19] Zhang X.-Y., Sun S.-H., Sun X.-J., Zhao Y.-R., Chen L., Yang Y., Lü W., Li D.-B., Plasma-Induced, Nitrogen-Doped Graphene-Based Aerogels for High-Performance Supercapacitors, Light: Science & Applications, 5(10): e16130-e16130 (2016).
[20] Chen J., Lin C., Zhang M., Jin T., Qian Y., Constructing Nitrogen, Selenium Co-Doped Graphene Aerogel Electrode Materials for Synergistically Enhanced Capacitive Performance, ChemElectroChem, 7(15): 3311-3318 (2020).
[21] Cheng Y., Zhou S., Hu P., Zhao G., Li Y., Zhang X., Han W., Enhanced Mechanical, Thermal, and Electric Properties of Graphene Aerogels Via Supercritical Ethanol Drying and High-Temperature Thermal Reduction, Scientific Reports, 7(1): 1439 (2017).
[22] Hu H., Zhao Z., Wan W., Gogotsi Y., Qiu J., Ultralight and Highly Compressible Graphene Aerogels, Advanced Materials, 25(15): 2219-2223(2013).
[23] Gong F., Liu X., Yang Y., Xia D., Wang W., Duong H.M., Papavassiliou D.V., Xu Z., Liao J., Wu M., A Facile Approach to Tune the Electrical and Thermal Properties of Graphene Aerogels by Including Bulk MoS₂, Nanomaterials (Basel), 7(12): 420 (2017).
[24] Xie Y., Xu S., Xu Z., Wu H., Deng C., Wang X., Interface-Mediated Extremely Low Thermal Conductivity of Graphene Aerogel, Carbon, 98: 381-390 (2016).
[25] Yue C., Feng J., Feng J., Jiang Y., Low-Thermal-Conductivity Nitrogen-Doped Graphene Aerogels for Thermal Insulation, RSC Advances, 6(12): 9396-9401(2016).
[26] Cai W., Moore A.L., Zhu Y., Li X., Chen S., Shi L., Ruoff R.S., Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition, Nano Letters, 10(5): 1645-1651 (2010).
[27] Yang Ping W.X.-L., Li Pei,Wang Huang, Zhang Li-Qiang, Xie Fang-Wei, The Effect of Doped Nitrogen and Vacancy on Thermal Conductivity of Graphene Nanoribbon from Nonequilibrium Molecular Dynamics, Acta Physica Sinica, 61(7): 76501 (2012).
[28] Karamitaheri H., Neophytou N., Pourfath M., Kosina H., Study of Thermal Properties of Graphene-Based Structures Using the Force Constant Method, Journal of Computational Electronics, 11(1): 14-21 (2012).
[29] Khosravian N., Samani M.K., Loh G.C., Chen G.C.K., Baillargeat D., Tay B.K., Effects of a Grain Boundary Loop on the Thermal Conductivity of Graphene: A Molecular Dynamics Study, Computational Materials Science, 79: 132-135 (2013).
[30] Zhang H., Lee G., Cho K., Thermal Transport in Graphene and Effects of Vacancy Defects, Physical Review B, 84(11): 115460 (2011).
[31] Zhong Y., Zhou M., Huang F., Lin T., Wan D., Effect of Graphene Aerogel on Thermal Behavior of Phase Change Materials for Thermal Management, Solar Energy Materials and Solar Cells, 113: 195-200 (2013).
[32] Fan Z., Tng D.Z.Y., Lim C.X.T., Liu P., Nguyen S.T., Xiao P., Marconnet A., Lim C.Y.H., Duong H.M., Thermal and Electrical Properties of Graphene/Carbon Nanotube Aerogels, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 445: 48-53 (2014).
[33] Fan Z., Marconnet A., Nguyen S.T., Lim C.Y.H., Duong H.M., Effects of Heat Treatment on the Thermal Properties of Highly Nanoporous Graphene Aerogels Using the Infrared Microscopy Technique, International Journal of Heat and Mass Transfer, 76: 122-127 (2014).
[34] Tang G., Jiang Z.-G., Li X., Zhang H.-B., Dasari A., Yu Z.-Z., Three Dimensional Graphene Aerogels and Their Electrically Conductive Composites, Carbon, 77: 592-599 (2014).
[35] Jangi A., Rezaei M., Talebi S., Haghgoo M., Novel Flyweight Three-dimensional Self-Assembled Graphene Oxide/ Octa(Aminophenyl) Polyhedral Oligomeric Silsesquioxane Hybrid Aerogels, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 40(3): 743-757 (2021).
[36] Javadi A., Zheng Q., Payen F., Javadi A., Altin Y., Cai Z., Sabo R., Gong S., Polyvinyl Alcohol-Cellulose Nanofibrils-Graphene Oxide Hybrid Organic Aerogels, ACS Applied Materials & Interfaces, 5(13): 5969-5975 (2013).
[37] Alhwaige A.A., Herbert M.M., Alhassan S.M., Ishida H., Qutubuddin S., Schiraldi D.A., Laponite/Multigraphene Hybrid-Reinforced Poly(Vinyl Alcohol) Aerogels, Polymer, 91: 180-186 (2016).
[38] Qiu B., Xing M., Zhang J., Recent Advances in Three-Dimensional Graphene Based Materials for Catalysis Applications, Chemical Society Reviews, 47(6): 2165-2216 (2018).
[39] Li J., Li J., Meng H., Xie S., Zhang B., Li L., Ma H., Zhang J., Yu M., Ultra-Light, Compressible and Fire-Resistant Graphene Aerogel as a Highly Efficient and Recyclable Absorbent for Organic Liquids, Journal of Materials Chemistry A, 2(9): 2934-2941 (2014).
[40] Kim K.H., Oh Y., Islam M.F., Graphene Coating Makes Carbon Nanotube Aerogels Superelastic and Resistant to Fatigue, Nature Nanotechnology, 7(9): 562-566 (2012).
[41] Groβ J., Fricke J., Scaling of Elastic Properties in Highly Porous Nanostructured Aerogels, Nanostructured Materials, 6(5): 905-908 (1995).
[42] Alhassan S.M., Qutubuddin S., Schiraldi D., Influence of Electrolyte and Polymer Loadings on Mechanical Properties of Clay Aerogels, Langmuir, 26(14): 12198-12202 (2010).
[43] Randall J.P., Meador M.A.B., Jana S.C., Tailoring Mechanical Properties of Aerogels for Aerospace Applications, ACS Applied Materials & Interfaces, 3(3): 613-626 (2011).
[44] Aegerter M.A., Leventis N., Koebel M.M., Aerogels Handbook,  (2011).
[45] Han M., Xie Y., Liu J., Zhang J., Wang X., Significantly Reducedc-Axis Thermal Diffusivity of Graphene-Based Papers, Nanotechnology, 29(26): 265702 (2018).
[46] Mahanta N.K., Abramson A.R., "Thermal Conductivity of Graphene and Graphene Oxide Nanoplatelets", 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 1-6 (2012).
[47] Ye S., Feng J., Wu P., Highly Elastic Graphene Oxide–Epoxy Composite Aerogels Via Simple Freeze-Drying and Subsequent Routine Curing, Journal of Materials Chemistry A, 1(10): 3495-3502 (2013).
[48] Liao W.-H., Yang S.-Y., Hsiao S.-T., Wang Y.-S., Li S.-M., Ma C.-C.M., Tien H.-W., Zeng S.-J., Effect of Octa(Aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the Mechanical and Dielectric Properties of Polyimide Composites, ACS Applied Materials & Interfaces, 6(18): 15802-15812 (2014).
[49] Xue Y., Liu Y., Lu F., Qu J., Chen H., Dai L., Functionalization of Graphene Oxide with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Applications, The Journal of Physical Chemistry Letters, 3(12): 1607-1612 (2012).
[50] Namvari M., Du L., Stadler F.J., Graphene Oxide-Based Silsesquioxane-Crosslinked Networks - Synthesis and Rheological Behavior, RSC Advances, 7(35): 21531-21540 (2017).
[51] Zhang Q., Lin D., Deng B., Xu X., Nian Q., Jin S., Leedy K.D., Li H., Cheng G.J., Flyweight, Superelastic, Electrically Conductive, and Flame-Retardant 3D Multi-Nanolayer Graphene/Ceramic Metamaterial, Advanced Materials, 29(28): 1605506 (2017).
[52] Li L., Li B., Dong J., Zhang J., Roles of Silanes and Silicones in Forming Superhydrophobic and Superoleophobic Materials, Journal of Materials Chemistry A, 4(36): 13677-13725 (2016).