Determination of Interaction Parameters of Activity Coefficient Models in Liquid-Liquid Extraction with the Particle Swarm Optimization

Document Type : Research Article


Department of Chemical Engineering, University of Guilan, Rasht, Iran


Recently, optimization methods have been extensively applied in phase equilibrium calculations. Among these methods, Particle Swarm Optimization (PSO) can be used to calculate the interaction parameters of activity coefficient models in equilibrium systems. In this study, based on the particle swarm optimization, the interaction parameters of 5  activity coefficient models (2-suffix Margules, 3-suffix Margules, Wilson, NRTL and UNIQUAC) have been calculated for 20 ternary extraction systems (water + carboxylic acids + organic solvents) including 126 tie-lines. The values of binary interaction parameters of these models along with the root mean square deviations (RMSD) are reported. The mean values of RMSD of the systems in the order of the mentioned models have been calculated 0.0294, 0.0041, 0.0114, 0.0016 and 0.0034, respectively. The results show that all models except 2-suffix Margules model have relatively good accuracy. By comparing the RMSD values in literature and the values determined by PSO for NRTL and UNIQUAC models, the RMSD values of the models improved from 0.0124 and 0.0181 to 0.0016 and 0.0034, respectively.


Main Subjects

[2] Shekarsaraee S. L., Ghanadzadeh Gilani A., Ghanadzadeh Gilani H., Kashef A., Fallahi S., Liquid Phase Equilibria of Aqueous Mixtures of Carboxylic Acids (C1−C4) with Ethylbenzene: Thermodynamic and Mathematical Modelling, J. Chem. & Eng. Data, 61: 3391–3397 (2016).
[3] Ghanadzadeh Gilani A., Azadian M., Tie-Line Data for Water–Formic Acid–1-Decanol Ternary System at T = 298.2, 303.2, 313.2, and 323.2 K, J. Therm. Acta, 547: 141-145 (2012).
[4] Sangashekan M., Asan Sh., Ghanadzadeh Gilani H., Investigation of Eosin B Removal from Aqueous Solution Employing Combined Graphene Oxide Adsorption and Zinc Oxide Coagulation Processes, J. Fib. and Poly., 20: 1411-1417 (2019).
[5] Matlock M. M., Werton B. S., Atwood D. A., Chemical Precipitation of Heavy Metals from Acid Mine Drainage, J. Water Res., 36: 4757-4764 (2002).
[6] Hunsom M., Pruksathorn K., Damronglerd S., Vergnes H., Duverneuil P., Electrochemical Treatment of Heavy Metals (Cu 2+, Cr 6+, Ni 2+) from Industrial Effluent and Modeling of Copper Reduction, J. Water Res., 39: 610-616 (2005).
[7] Maturana H. A., Peric I. M., Rivas B. L., Pooley S. A., Interaction of Heavy Metal Ions with an Ion Exchange Resin Obtained from a Natural Polyelectrolyte, J. Poly. Bull., 67: 669-676 (2011).
[8] Lintomen L., Pinto R. T. P., Batista E., Meirelles A. J. A., Maciel M. R. W., Liquid-Liquid Equilibrium of the Water + Citric Acid + 2-Butanol + Sodium Chloride System at 298.15 K, J. Chem. & Eng. Data, 45: 1211-1214 (2000).
[9] Lintomen L., Pinto R.T.P., Batista E., Meirelles A.J.A., Maciel M.R.W., Liquid-Liquid Equilibrium of the Water + Citric Acid + Short Chain Alcohol + Tricaprylin System at 298.15 K, J. Chem. & Eng. Data, 46: 546-550 (2001).
[10] Wu X. M., Guo H., Soyekwo F., Zhang Q. G., Lin C. X., Liu Q. L., Zhu A.M., Pervaporation Purification of Ethylene Glycol Using the Highly Permeable PIM-1 MembraneJ. Chem. & Eng. Data, 46: 579−586 (2016).
[11] Yu L., Zhou W., Li Y., Zhou Q., Xu H., Gao B., Wang Zh., Antibacterial Thin-Film Nanocomposite Membranes Incorporated with Graphene Oxide Quantum Dot-Mediated Silver Nanoparticles for Reverse Osmosis Application, J. Sust. Chem. & Eng., 7: 8724-8734 (2019).
[12] González E. J., Calvar N., Gómez E., Domínguez Á., Application of [EMim][ESO 4] Ionic Liquid as Solvent in the Extraction of Toluene from Cycloalkanes: Study of Liquid–Liquid Equilibria at T= 298.15 K, J. Fluid Phase Equil., 303: 174–179 (2011).
[13] Calvar N., Domínguez I., Gómez E., Domínguez Á., Separation of Binary Mixtures Aromatic+ Aliphatic Using Ionic Liquids: Influence of the Structure of the Ionic liquid, Aromatic and Aliphatic, J. Chem. & Eng. Data, 175: 213–221 (2011).
[14] Fandary M. S., Alkhaldi K. H., Al-Jimaz A. S., Al-Rashed M. H., AlTuwaim M. S., Evaluation of [Bmim][PF 6] as an Ionic Solvent for the Extraction of Propylbenzene from Aliphatic Compounds, J. Chem. Thermodynamics, 54: 322–329 (2012).
[16] Sahoo R. K., Banerjee T., Ahmad S. A., Khanna A., Improved Binary Parameters using GA for Multi-Component Aromatic Extraction: NRTL Model Without and with Closure Equations, J. Fluid Phase Equil., 239: 107–119 (2006).
[17] Singh M. K., Banerjee T., Khanna A., Genetic Algorithm to Estimate Interaction Parameters of Multicomponent Systems for Liquid–Liquid Equilibria, J. Comp. & Chem. Eng., 29: 1712–1719 (2005).
[18] Sahoo R. K., Banerjee T., Khanna A., UNIQUAC Interaction Parameters with Closure for Imidazolium Based Ionic Liquid Systems Using Genetic Algorithm, Canad. J. Chem. Eng., 85: 833–840 (2007).
[19] Rashtchian D., Ovaysi S., Taghikhani V., Ghotbi C., Application of the Genetic Algorithm to Calculate the Interaction Parameters for Multiphase and Multicomponent Systems, Iran. J. Chemistry and Chemical Eng. (IJCCE), 26(3): 89–96 (2007).
[20] Alvarez V. H., Larico R., Ianos Y., Aznar M., Parameter Estimation for VLE Calculation by Global Minimization: The Genetic Algorithm, Braz. J. Chem. Eng., 25: 409–416 (2008).
[22] Kabouche A., Boultif A., Abidi A., Gherraf N., Interaction Parameter Estimation in Liquid–Liquid Phase Equilibrium Modeling using Stochastic and Hybrid Algorithms, J. Fluid Phase Equil., 336: 113– 121 (2012).
[25] Shekarsaraee S., mohamadizad F., Liquid-Liquid Equilibria for the Aqueous Mixture of C5 Carboxylic Acids and Heavier Than Water Solvents at T = 298.2 K, J. Chem. Thermodynamics, 118: 316–324 (2017).
 [27] Ghanadzadeh A., Amouzadeh F., Ghalami-Choobar B., A Comparative Study of Liquid–Liquid Equilibria for Aqueous Mixtures of Straight Chain and Branched Chain Carboxylic Acids with Methyl Isobutyl Carbinol, J. Chem. Thermodynamics, 143: 16–26 (2020).
[28] Ghanadzadeh A., Ghanadzadeh H., Saadat S. L. S., Nasiri-Touli E., Peer M., Liquid-Liquid Equilibrium data in Aqueous Solutions of Propionic and Butyric Acids with 1-Heptanol at T=(298.15, 308.15, and 318.15) KKorean J. Chem. Eng., 33: 1408–1415 (2016).
[29] Ghanadzadeh A., Ghanadzadeh H., Saadat S. L. S., Solubility and Tie Line Data for the Aqueous Solutions of Butyric Acid with 1-Octanol and 2-Ethyl-1-Hexanol at Various Temperatures, J. Fluid Phase Equil., 361: 45– 53 (2014).
[31] Seader J. D., Henley E. J., "Separation Process Principles", 2nd ed., John Wiley & Sons, Inc, New York, USA (2006).
[32] Prausnitz J. M., Lechtenthaler R. N. Azevedo E. G., "Molecular Thermodynamics of Fluid Phase Equilibria", 3rd ed., Prentice-Hall, New York, USA (1999).
[33] Kennedy J., Eberhart R., Particle Swarm Optimization, IEEE International Conference on Neural Networks, 4: 1942–1948 (1995).
[34] Bondi A., "Physical Properties of Molecular Crystals Liquids and Glasses", John Wiley and Sons Inc, New York, USA (1968)