Improvement of Synthesis Parameters of Two-Dimensional MXene Ti3C2TX Nanoparticles Using Combined Mechanical and Chemical Mill

Document Type : Research Article


1 Faculty of Physics, Shahrood University of technology, Shahrood 3619995161, Iran

2 Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran


In this paper, Ti3C2TX (Mxene) was produced using 40% hydrofluoric acid (HF) from a precursor of Ti3AlC2. The Ti3AlC2 Max phase was synthesized by the mechanical method and then placed in a high-temperature furnace. To this aim, titanium carbide (TiC), titanium (Ti) and aluminum (Al) with atomic ratio of 2:1:1 were used due to the low heat capacity to increase the purity of Ti3AlC2. The parameter of different hours of ball milling was studied. To investigate the effect of different milling time on Ti3AlC2, and synthesis of Ti3C2TX, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Raman spectroscopy, were used. The results showed that changing the milling time significantly affected the synthesis quality of the Ti3AlC2 sample. After 9 h milling, the particle size was < 38 μm and in the X-ray diffraction spectrum, all the peaks of the sample were formed according to its standard pattern, and the peak (002) is located at 2𝜃 = 9.14 degrees, which is the main peak indicates the best quality of Ti3AlC2. Also, the structural and morphological analysis results showed that Ti3C2TX MXene was produced in an entirely layered structure, and due to etching, the interlayer distance increased from 0.968nm to 1.019nm. It can be expressed that due to the change of 2𝜃 = 9.14 for the Ti3AlC2 to 2𝜃 = 8.67 for the Ti3C2TX MXene was synthesized with good quality.


[1] کریمی، پویا؛ سنچولی، محمود؛ مطالعه­ ی قابلیت نانوساختارهای بر پایه­ی گرافن به عنوان باتری­های یون سدیم، نشریه شیمی و مهندسی شیمی ایران، 38(4): 23 تا 30 (1398).
[2] Su  X, Zhang J, Mu H, Zhao J, Wang Zh, Zhao Zh, Han Ch, Ye Z, Effects of Etching Temperature and Ball Milling on the Preparation and Capacitance of Ti3C2 MXene, Alloys and Compounds, 752: 32-39 (2018).
[3] Zhang H., Ultrathin Two-Dimensional Nanomaterials, ACS Nano, 9: 9451-9469 (2015).
[4] Lakhe P, Prehn E M, Habib T, Lutkenhaus J L, Radovic M, Mannan M. S, Green M J., Process Safety Analysis for Ti3C2Tx MXene Synthesis and Processing, Industrial and Engineering Chemistry Research, 58: 1570-1579 (2019).
[5] Anasori B, Lukatskaya M R., Gogotsi Y, 2D Metal Carbides and Nitrides (MXenes) for Energy Storage, Nature Reviews Materials, 2 (2017).
[6] Sun W, Shah S. A., Chen Y., Tan Z., Gao H., Habib T., Radovic M., Green M. J., Electrochemical Etching of Ti2AlC to Ti2CT:X (MXene) in Low-Concentration Hydrochloric Acid Solution, Materials Chemistry A, 5: 21663-21668 (2017).
[7] Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y, Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene), Chemistry of Materials, 29: 7633-7644 (2017).
[8] Hope Michael A., Forse Alexander C., Griffith Kent J., Lukatskaya Maria R., Ghidiu M., Gogotsi Y., Grey C P.,  NMR Reveals the Surface Functionalisation of Ti3C2 MXene, Royal Society of Chemistry,  18: 5099–5102 (2016).
[9] Ahmed B, Anjum D H., Gogotsi Y, Alshareef H N., Atomic Layer Deposition of SnO2 on MXene for Li-ion Battery Anodes, Nano Energy., 34: 249–256 (2017).
[10] Verger L., Natu V., Carey M., Barsoum M.W., MXenes: An Introduction of Their Synthesis, Select Properties, and Applications, Trends in Chemistry, 1: 656–669 (2019).
[11] Meng-Qiang Zh, Chang E. R, Zheng L, Maria R.L, Chuanfang Zh ,Katherine L. Van A, Michel W. Barsoum,Yury G, Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance, Advanced Materials, 27: 339–345 (2015).
[12] Ran J, Gao G, Li Fa T, Ma T Y, Du A, Qiao S Zh, Ti3C2 MXene Co-Catalyst on Metal Sulfide Photo-Absorbers for Enhanced Visible-Light Photocatalytic Hydrogen Production,  Nature Communications, 8: 1–10 (2017).
[13] Ren Chang E., Hatzell Kelsey B., Alhabeb M., Ling Zh., Mahmoud Khaled A., Gogotsi, Yury, Charge- and Size-Selective Ion Sieving Through Ti3C2Tx MXene Membranes, Physical Chemistry Letters, 6: 4026–4031 (2015).
[14] Chen J., Chen Ke, Tong D., Huang Y., Zhang J., Xue J., Huang Q., Chen T., CO2 and Temperature Dual Responsive “Smart” MXene Phases, The Royal Society of Chemistry,. 51: 314–317 (2015).
[15] Liu H, Wang Y, Yang L, Liu R, Zeng Ch, Synthesis and Characterization of Nanosized Ti3AlC2 Ceramic Powder by Elemental Powders of Ti, Al and C in Molten Salt, Journal of Materials Science and Technology, 37: 77–84 (2020).
[16] Shahin N., Kazemi Sh, Heidarpour A., Mechanochemical Synthesis Mechanism of Ti3AlC2 MAX Phase from Elemental Powders of Ti, Al and C, Advanced Powder Technology, 27: 1775–1780 (2016).
[17] Joel E. von T, Konstantin L. Firestein, Joseph F.S. Fernando, Chao Zh., Dumindu P.. Siriwardena, Courtney-Elyce M. Lewis, Dmitri V. Golberg, The Effect of Ti3AlC2 MAX Phase Synthetic History on the Structure and Electrochemical Properties of Resultant Ti3C2 MXenes, Materials & Design , 108947 (2020).
[18] Li Zhengyang, W.L., Sun D., Zhang Y., Liu B., Hu Q., Zhou A., Synthesis and Thermal Stability of Two-Dimensional Carbide MXene Ti3C2, Materials Science and Engineering B,. 191: 33–40 (2015).
[19] Kvashina T.S., Uvarov N.F., Korchagin M.A., Krutskiy Yu L., Ukhina A.V., Synthesis of MXene Ti3C2 by Selective Etching of MAX-Phase Ti3AlC2, Materials Today: Proceedings., 31: 592–594 (2020).
[20] Kumar S, Lei Y, Alshareef Niman H., Quevedo-Lopez M.A., Salama Khaled N., Biofunctionalized Two-Dimensional Ti3C2 MXenes for Ultrasensitive Detection of Cancer Biomarker, Biosensors and Bioelectronics, 121: 243–249 (2018).
[21] Shuck Christopher E., Han M., Maleski K., Hantanasirisakul K., Kim S.J., Choi J., Reil William E.B., Gogotsi Y, Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx MXene, ACS Applied Nano Materials, 2: 3368–3376 (2019).
[22] Lian P., Dong Y., Wu Zhong Sh., Zheng Sh., Wang S., Sun Ch., Qin J., Shi X., Bao X., Alkalized Ti3C2 MXene Nanoribbons with Expanded Interlayer Spacing for High-Capacity Sodium and Potassium Ion Batteries, Nano Energy., 40: 1–8 (2017).
[23] Wang Y., Wang J., Han G., Du Ch., Deng Q., Gao Y., Yin G., Song Y., Pt Decorated Ti3C2 MXene for Enhanced Methanol Oxidation Reaction, Ceramics International., 45: 2411–2417 (2019).
[24] Zhao Ch., Wang Q., Zhang H., Passerini S., Qian X., Two-Dimensional Titanium Carbide/RGO Composite for High-Performance Supercapacitors, ACS Applied Materials and Interfaces., 8: 15661–15667 (2016).
[25] Paul R., Gayen R. N., Biswas S., Bhat S. Venkataprasad, Bhunia R., Enhanced UV Detection by Transparent Graphene Oxide/ZnO Composite Thin Films, RSC Advances., 6: 61661–61672 (2016).
[26] Ismai, M.A., Taha K.K., Modwi A., Khezami L., ZnO Nanoparticles: Surface and X-Ray Profile Analysis, Ovonic Research, 14: 381–393 (2018).
[27] Yasaei P., Hemmat Z., Foss Cameron J., Li Shixuan J., Hong L, Behranginia A, Majidi L, Klie Robert F., Barsoum Michel W., Aksamija Z, Salehi-Khojin A, Enhanced Thermal Boundary Conductance in Few-Layer Ti3C2 MXene with Encapsulation, Advanced Materials., 30: 10–20 (2018).
[28] Yu H, Suo X, Gong Y, Zhu Y, Zhou J, Li H, Eklund P, Huang Q, Ti3AlC2 Coatings Deposited by Liquid Plasma Spraying, Surface and Coatings Technology. 299: 123–128 (2016).