Design and fabrication of a TCH/Cu complex grafted to magnetic nanoparticles and its application as a new efficient and recyclable nanocatalyst in multi-component synthesis of 2-amino-4H-chromones in aqueous medium

Document Type : Research Article


1 1Faculty of Chemistry, Damghan University, Damghan, Iran

2 2Department of Chemistry, Payame Noor University, Tehran, 19395-4697, Iran


In this project, based on previous findings, first the magnetic nanoparticles were coated with silicon dioxide particles by core-shell method and from reaction with 3-chloropropyl triethoxy silane and then with organic ligand thiocarbohydrazide (Fe3O4@SiO2-TCH) was functionalized. The Cu ions were then stabilized on magnetic silicate surface. The structure of the prepared nanoparticles as a magnetic organic-metal hybrid was investigated and confirmed using FT-IR, FESEM, EDX, XRD, TGA, VSM and BET instrumental methods. Next, its catalytic activity in the synthesis of a number of 4-aryl-2-amino chromenes was investigated by the three-component condensational reaction of aldehydes, malononitrile and dimedone. The advantages of this method include cheap, safe and reusability of nanocatalyst, easy separation of heterogeneous catalyst from the reaction medium, short reaction time, high efficiency, easy and fast separation of the product and use of non-toxic water solvent, which makes this method in simplicity, be in the scope of "green chemistry".


Main Subjects

[1] Lu J., Toy P. H. Organic Polymer Supports for Synthesis and for Reagent and Catalyst Immobilization. Chemical Reviews, 109(2): 815-838 (2009).
[3] Zhu Y., Fang Y., Kaskel S. Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery. The Journal of Physical Chemistry C, 114: 16382-16388 (2010).
[4] Neuberger T., Schöpf B., Hofmann H., Hofmann M., Von Rechenberg B. Superparamagnetic Nanoparticles for Biomedical Applications: Possibilities and Limitations of a New Drug Delivery System. Journal of Magnetism and Magnetic Materials, 293(1): 483-496 (2005).
[5] Pankhurst Q. A., Connolly J., Jones S. K., Dobson J. Applications of Magnetic Nanoparticles in Biomedicine. Journal of Physics D: Applied Physics, 36(13): R167 (2003).
[6] Graham D. L., Ferreira H. A., Freitas P. P. Magnetoresistive-Based Biosensors and Biochips. TRENDS in Biotechnology, 22(9): 455-462 (2004).
[7]  Wang D., He J., Rosenzweig N., Rosenzweig Z. Superparamagnetic Fe2O3 Beads− CdSe/ZnS Quantum Dots Core− Shell Nanocomposite Particles for Cell Separation. Nano Letters, 4(3): 409-413(2004).
[8] Jordan A., Scholz R., Wust P., Fähling H., Felix R. Magnetic Fluid Hyperthermia (MFH): Cancer Treatment with AC Magnetic Field Induced Excitation of Biocompatible Superparamagnetic Nanoparticles. Journal of Magnetism and Magnetic Materials, 201(1-3): 413-419 (1999).
[9] Hu A., Yee G. T., Lin W. Magnetically Recoverable Chiral Catalysts Immobilized on Magnetite Nanoparticles for Asymmetric Hydrogenation of Aromatic Ketones. Journal of the American Chemical Society, 127(36): 12486-12487 (2005).
[10] Senapati K. K., Borgohain C., Phukan P. Synthesis of Highly Stable CoFe2O4 Nanoparticles and Their Use as Magnetically Separable Catalyst for Knoevenagel Reaction in Aqueous Medium. Journal of Molecular Catalysis A: Chemical, 339(1-2): 24-31 (2011).
[11] Lim C. W., Lee I. S. Magnetically Recyclable Nanocatalyst Systems for the Organic Reactions. Nano Today, 5(5): 412-434 (2010).
[12] Safari J., Banitaba S. H., Khalili S. D. Cellulose Sulfuric Acid Catalyzed Multicomponent Reaction for Efficient Synthesis of 1, 4-Dihydropyridines Via Unsymmetrical Hantzsch Reaction in Aqueous Media. Journal of Molecular Catalysis A: Chemical, 335(1-2): 46-50 (2011).
[13] Shen M., Driver T. G. Iron (II) Bromide-Catalyzed Synthesis of Benzimidazoles from Aryl Azides. Organic letters, 10(15): 3367-3370‏ (2008).
[14] Bahrami K., Khodaei M.M., Naali F. Mild and Highly Efficient Method for the Synthesis of 2-Arylbenzimidazoles and 2-Arylbenzothiazoles. The Journal of organic chemistry, 73(17): 6835-6837 (2008).
[16] Ellis G. P. “The Chemistry of Heterocyclic Compounds in Chromenes, Chromanes, and Chromones”, Edited. by A. Weissberger, EC Taylor (1977).
[17] Galil F. A., Riad B. Y., Sherif S. M., Elnagdi M. H. Activated Nitriles in Heterocyclic Synthesis: A Novel Synthesis of 4-Azoloyl-2-Amino Quinzolines. Chemistry Letters, 1123-1126 (1982).
[18] Varma R. S., Dahiya R. An Expeditious and Solvent-Free Synthesis of 2-Amino-Substituted Isoflav-3-Enes Using Microwave Irradiation. The Journal of Organic Chemistry, 63(22): 8038-8041 (1998).
[19] RW D., Currie K S., Mitchell S. A., Darrow J. W., Pippin D. A. Comb. Chem. High Throughput Screening, 7: 473 (2004).
[20] Patchett A. A., Nargund R. P., Privileged Structures—An Update (2000).
[21] Bonsignore L., Loy G., Secci D., Calignano A., Synthesis and Pharmacological Activity of 2-Oxo-(2H) 1-Benzopyran-3-Carboxamide Derivatives. European Journal of Medicinal Chemistry, 28(6): 517-520 (1993).
[22] Zhang, G., Zhang, Y., Yan, J., Chen, R., Wang, S., Ma, Y., & Wang, R. One-Pot Enantioselective Synthesis of Functionalized Pyranocoumarins and 2-Amino-4 H-Chromenes: Discovery of a Type of Potent Antibacterial Agent. The Journal of organic chemistry, 77(2): 878-888 (2012).
[24] Sabry N. M., Mohamed H. M., Khattab E. S. A., Motlaq S. S., El-Agrody A. M. Synthesis of 4H-Chromene, Coumarin, 12H-Chromeno [2, 3-d] Pyrimidine Derivatives and Some of Their Antimicrobial and Cytotoxicity Activities. European journal of medicinal chemistry, 46(2): 765-772 (2011).
[25] Skommer J., Wlodkowic D., Mättö M., Eray, M., Pelkonen J. HA14-1, A Small Molecule Bcl-2 Antagonist, Induces Apoptosis and Modulates Action of Selected Anticancer Drugs in Follicular Lymphoma B Cells. Leukemia research, 30(3): 322-331 (2006).
[26] Kemnitzer W., Kasibhatla S., Jiang S., Zhang H., Zhao J., Jia S., Vaillancourt L. Discovery of 4-Aryl-4H-Chromenes as a New Series of Apoptosis Inducers Using a Cell-and Caspase-Based High-Throughput Screening Assay. 2. Structure–Activity Relationships of the 7-and 5-, 6-, 8-Positions. Bioorganic & medicinal chemistry letters, 15(21): 4745-4751 (2005).
[27] Gourdeau H., Leblond L., Hamelin B., Desputeau C., Dong K., Kianicka I., Custeau D., Bourdeau C., Geerts L., Cai S. X., Drewe J., Labrecque D., Kasibhatla S., Tseng B., Antivascular and Antitumor Evaluation of 2-Amino-4-(3-Bromo-4,5-Dimethoxy-Phenyl)-3-Cyano-4H-Chromenes, a Novel Series of Anticancer Agents. Molecular Cancer  Therapeutics, 3: 1375-1383 (2004).
[29] Yang F., Wang H., Jiang L., Yue H., Zhang H., Wang Z., Wang L., A Green and One-Pot Synthesis of Benzo[g]Chromene Derivatives Through a Multi-Component Reaction Catalyzed by Lipase. RSC Advances, 5: 5213-5216 (2015).
[30] Shaabani A., Ghadari R., Ghasemi S., Pedarpour M., Rezayan A. H., Sarvary A., Ng, S. W. Novel One-Pot Three-and Pseudo-Five-Component Reactions: Synthesis of Functionalized Benzo [g]-and Dihydropyrano [2, 3-g] Chromene Derivatives. Journal of Combinatorial Chemistry, 11(6): 956-95‏ (2009).
[33] Yang G., Luo C., Mu X., Wang T., Liu X. Y. Highly Efficient Enantioselective Three-Component Synthesis of 2-Amino-4 H-Chromenes Catalysed by Chiral Tertiary Amine-Thioureas. Chemical Communications, 48(47): 5880-5882 (2012).
[34] Kabalka G. W., Venkataiah B., Das B. C., Synthesis of 2H-Chromenes in Ionic Liquid Solvents. Synlett, 12: 2194-2196 (2004).
[35] Makarem S., Mohammadi A. A., Fakhari A. R. A Multi-Component Electro-Organic Synthesis of 2-Amino-4H-Chromenes. Tetrahedron Letters, 49(50): 7194-7196‏ (2008).
[36] Shaabani A., Ghadari R., Ghasemi S., Pedarpour M., Rezayan A. H., Sarvary A., Ng S. W. Novel One-Pot Three-and Pseudo-Five-Component Reactions: Synthesis of Functionalized Benzo [g]-and Dihydropyrano [2, 3-g] Chromene Derivatives. Journal of Combinatorial Chemistry, 11(6): 956-959 (2009).
[38] Kalhor M., Rezaee‐Baroonaghi F., Dadras A., Zarnegar Z. Synthesis of New TCH/Ni‐Based Nanocomposite Supported on SBA‐15 and Its Catalytic Application for Preparation of Benzimidazole and Perimidine Derivatives. Applied Organometallic Chemistry33(5): e4784. (2019).
[40] Andalibi Salem S., Khazaei A., Seyf J. Y., Sarmasti N., Mahmoudiani Gilan, M. Preparation of Magnetic Cu (II) Nano-Structure (Based on Nano-Fe3O4) and Application to the Synthesis of Hexahydroquinoline Derivatives. Polycyclic Aromatic Compounds, 1-14‏ (2019).
[41] Kalhor, M., Sajjadi, S. M., Dadras, A. Cu/TCH-pr@ SBA-15 Nano-Composite: A New Organometallic Catalyst for Facile Three-Component Synthesis of 4-Arylidene-Isoxazolidinones. RSC Advances, 10(46): 27439-27446‏ (2020).
[42] Alizadeh, A., Khodaei, M. M., Kordestania, D., Beygzadeh, M. A Biguanide/Pd-Decorated SBA-15 Hybrid Nanocomposite: Synthesis, Characterization and Catalytic Application. Journal of Molecular Catalysis A: Chemical, 372: 167-174‏ (2013).
[43] Hu, J., Zou, Y., Liu, J., Sun, J., Yang, X., Kan, Q., Guan, J. Immobilization of Cu-Chelate Onto SBA-15 for Partial Oxidation of Benzyl Alcohol Using Water as the Solvent. Research on Chemical Intermediates, 41(8): 5703-5712 (2015).
[44] Sarkar, K., Dhara, K., Nandi, M., Roy, P., Bhaumik, A., Banerjee, P. Selective Zinc (II)‐Ion Fluorescence Sensing by a Functionalized Mesoporous Material Covalently Grafted with a Fluorescent Chromophore and Consequent Biological Applications. Advanced Functional Materials, 19(2): 223-234‏ (2009).
[45] Siddiqui, S. A., Narkhede, U. C., Palimkar, S. S., Daniel, T., Lahoti, R. J., Srinivasan, K. V. Room Temperature Ionic Liquid Promoted Improved and Rapid Synthesis of 2, 4, 5-Triaryl Imidazoles from Aryl Aldehydes and 1, 2-Diketones or α-Hydroxyketone. Tetrahedron, 61(14): 3539-3546 (2005).
[46] Xu, H., Tong, N., Cui, L., Lu, Y., Gu, H. Preparation of Hydrophilic Magnetic Nanospheres with High Saturation Magnetization. Journal of magnetism and magnetic materials, 311(1): 125-130 (2007).
[49] Boumoud, B., Yahiaoui, A. A., Boumoud, T., Debache, A. Available Online www. jocpr. com. Journal of Chemical and Pharmaceutical Research, 4(1): 795-799 (2012).
[50] Niknam, K., Borazjani, N., Rashidian, R., Jamali, A. Silica-Bonded N-Propylpiperazine Sodium N-Propionate as Recyclable Catalyst for Synthesis of 4H-Pyran Derivatives. Chinese Journal of Catalysis, 34(12): 2245-2254‏ (2013).