Application of semi-empirical quantum mechanical methods in estimation of biomolecular interactions

Document Type : Review Article


1 Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

2 Department of Physical Chemistry, Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran


Despite considerable progress in computational methods for calculating interactions between small molecules and proteins, estimation of the geometry of protein-ligand complexes and their binding free energies remains as a challenging task in the structure-based drug design. For an accurate description of these interactions requires the inclusion of quantum mechanical contributions using an extended atomic orbital basis set. For this purpose, some semi-empirical quantum mechanical methods have been developed that are much less expensive than more accurate “ab initio” and “density functional theory” methods.Currently, the application of fast and efficient semi-empirical quantum mechanical methods for calculating electronic properties of large molecules and biological systems becomes a routine task. In this contribution, the development of these methods and their successful applications in different fields – especially in biomolecular interactions – are reviewed.


Main Subjects

[1] Adams C.P., Brantner V.V., Spending on New Drug Development, Health Economics, 19: 130-141(2010).
[2] Mehta C.H.,  Narayan R., Nayak, U. Y., Computational  Modeling  for Formulation  Design, Drug Discovery Today, 24: 781-788 (2019). 
[3] Cavasotto C.N., Natalia S. Adler N.S., Aucar M.G., Quantum Chemical Approaches in Structure-Based Virtual Screening and Lead Optimization, Frontiers in Chemistry, 6: 188 (2018).
[4] Iglesias J., Saen-oon S., Soliva R., Guallar V., Computational Structure-Based Drug Design: Predicting Target Flexibility, WIREs Computational Molecular Science, 8: e1367 (2018).
[5] Cavasotto C. N., Aucar M. G., Adler N. S., Computational Chemistry in Drug Lead Discovery and Design, Int. Journal of Quantum Chememstry, 119: e25678 (2019).
[6] Khammari A., Saboury A. A., Karimi-Jafari M. H.,, Insights into the Molecular Interaction Between Two Polyoxygenated Cinnamoylcoumarin Derivatives and Human Serum Albumin, Physical Chemistry Chemical Physics19: 10099-10115 (2017).
[7] Nourisefat M., Salehi N., Yousefinejad S., Panahi F., Bagherzadeh K., Amanlou M., Khalafi-Nezhad A., Karimi-Jafari M. H., Sheibani N., Moosavi-Movahedi A. A., Biological Evaluation of 9-(1H-Indol-3-yl) Xanthen-4-(9H)-Ones Derivatives as Noncompetitive α-Glucosidase Inhibitors: Kinetics and Molecular Mechanisms, Structural Chemistry, 30: 703-714 (2019)
[8] Ashouri M., Maghari A., Karimi-Jafari M.H., Hydrogen Bonding Motifs in a Hydroxy-Bisphosphonate Moiety: Revisiting the Problem of Hydrogen Bond Identification, Physical Chemistry Chemical Physics, 17: 13290-13300 (2015).
[9] Poursoleiman A., Karimi-Jafari M. H., Zolmajd-Haghighi Z., Bagheri M., Haertlé T., Rezaei Behbehanid G., Ghasemi A., Stroylova Y. Y.,  Muronetz V. I., Saboury A. A., Polymyxins Interaction to the Human Serum Albumin: A Thermodynamic and Computational Study, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 217: 155-163 (2019).
[10] Burlingham B.T., Widlanski  T. S., An Intuitive Look at the Relationship of Ki and IC50: a More General Use for the Dixon PlotJournal of Chemical Education, 80: 214-218 (2003).
[11] Lewis E. A., Murphy K. P., Isothermal Titration Calorimetry, Protein-Ligand Interactions, 305: 1-15 (2005).
[12] Koshland, D. E. Jr., The Key-Lock Theory and the Induced Fit Theory, Angewandte Chemie International Edition, 33: 2375-2378 (1994).
[13] Eisenmesser E. Z., Bosco D. A., Akke. M., Kern. D., Enzyme Dynamics During Catalysis, Science, 295: 1520–1523 (2002).
[14] Bissantz C., Kuhn B., Stahl M., A Medicinal Chemist's Guide to Molecular Interactions, Jornal of Medicinal Chemistry, 53: 5061–5084 (2010).
[15] Fonseca Guerra C., Bickelhaupt F. M., Snijders J. G., Baerends E. J., The Nature of the Hydrogen Bond in DNA Base Pairs: the Role of Charge Transfer and Resonance Assistance, Chemistry European Journal, 5: 3581–3594 (1999).
[16] Hobza P., Dethlefs K. M., Non-Covalent Interactions: Theory and Experiment, Royal Society of Chemistry, London, (2010).
[17] Wolters L. P., Bickelhaupt  F. M., Halogen Bonding Versus Hydrogen Bonding: A Molecular Orbital Perspective, Chemistry Open, 1: 96–105 (2012).
[18] Hugas. D, Simon. S, Duran. M, Guerra. C. F, Bickelhaupt. F. M., Dihydrogen Bonding: Donor–Acceptor Bonding (AH… HX) Versus the H2 Molecule, Chemistry European Journal, 15: 5814 –5822 (2009). 
[19] Gussregen. S, Matter. H, Hessler. G, Muller. M, Schmidt. F, Clark. T., 3D-QSAR Based on Quantum-Chemical Molecular Fields: Toward an Improved Description of Halogen Interactions, Journal of Chemical Information and Modeling, 52: 2441–2453 (2012).
[20] Singh N., Warshel A., Absolute Binding Free Energy Calculations: On the Accuracy of Computational Scoring of Protein-ligand Interactions, Proteins Structure Function Bioinformatics. 78: 1705– 1723 (2010).
[21] M. R. Shirts, J. W. Pitera, W. C. Swope, V. S. Pande, Extremely Precise Free Energy Calculations of Amino Acid Side Chain Analogs: Comparison of Common Molecular Mechanics Force Fields for Proteins, Journal of Chemical Physics, 119: 5740–5761 (2003).
[22] Kollman P. A., Massova I., Reyes C., Kuhn B., Huo S., Chong L., Lee M., Lee T., Duan Y., Wang W., Donini O., Cieplak P., Srinivasan J., Case D. A., Cheatham T. E., Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models, Accounts of Chemical Research, 33: 889–897 (2000).
[23] Ryde U., Söderhjelm P., Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods, Chem. Rev. 116: 5520-5566 (2016).
[24] Anisimov V. M., Cavasotto C. N., Quantum Mechanical Binding Free Energy Calculation for Phosphopeptide Inhibitors of the Lck SH2 Domain, Journal of Computational Chemistry. 32: 2254–2263 (2011).
[25] Mikulskis P., Genheden S., Wichmann K., Ryde U., A Semiempirical Approach to Ligand‐Binding Affinities: Dependence on the Hamiltonian and Corrections, Journal of Computational Chemistry, 33: 1179–1189 (2012).
[26]  Field M. J., Bash P. A., Karplus M., A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations, Journal of Computational Chemistry, 11: 700–733(1990).
[27] Thiel, W., Semiempirical Quantum–Chemical Methods, WIREs Computational Molecular Science, 4: 145–157 )2014(.
[28] Zaleśny R., Papadopoulos M. G., Mezey P. G., Leszczynski J. (Eds.), “Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications”, Springer, New York, (2011)
[29] Ochsenfeld C., Kussmann J., Lambrecht D. S., “Reviews in Computational Chemistry: Linear-Scaling Methods in Quantum Chemistry”, John Wiley & Sons, Inc., 23: (2007).
[30] Young, David C., Computational Chemistry: “A Practical Guide for Applying Techniques to Real-World Problems”. John Wiley & Sons, Inc., 2001.
[31] Christensen A. S., Kubař T., Cui Q., Elstner M., Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications, Chem. Rev. 116: 5301-5337 (2016).
[32] Jensen, F., “Introduction to Computational Chemistry”, 2nd Ed., John Wiley & Sons Ltd., West Sussex, England, (2007).
[33] Dewar, M. J. S., Thiel, W. J., Ground States of Molecules. The MNDO Method. Approximations and Parameters, Journal of American Chemical Society, 99: 4899− 4907 (1977).
[34] Dewar, M. J. S., Zoebisch, E. G., Healy E. F., Stewart J. J. P., Development and Use of Quantum Mechanical Molecular Models. AM1: A New General Purpose Quantum Mechanical Molecular Model, Journal of American Chemical Society, 107: 3902−3909 (1985).
[35] Rocha, G. B.; Freire, R. O.; Simas, A. M.; Stewart, J. J. P. RM1: A Reparameterization of am1 for H, C, N, O, P, S, F, Cl, Br, and I, Journal of Computational Chemistry,  27: 1101−1111 (2006).
[36] Stewart, J. J. P., Optimization of Parameters for Semiempirical Methods III. Applications, Journal of Computational Chemistry, 10: 221−264 (1989).
[37] Tubert-Brohman, I.; Guimarães, C. R. W.; Repasky, M. P.; Jorgensen, W. L., Extension of the PDDG/PM3 and PDDG/MNDO Semiempirical Molecular Orbital Methods to the Halogens, Journal of Computational Chemistry, 25: 138−150 (2004).
[38] Thiel, W.; Voityuk, A. A., Extension of the MNDO Formalism tod Orbitals: Integral Approximations and Preliminary Numerical Results, Theoretica Chimica Acta, 81: 391−404 (1992).
[41] Kolb, M. Thiel, W., Beyond the MNDO Model: Methodical Considerations and Numerical Results, Journal of Computational Chemistry, 14: 775–789 (1993).
[42] Elstner, M., Gaus, M. Cui, Q., Density Functional Tight Binding: Application to Organic and Biological Molecules , WIREs Computational Molecular Science, 4: 49–61 (2014).
[45] Winget, P., Selcuki, C., Horn, A. H. C., Martin, B., Clark, T., Towards a ‘‘Next Generation’’ Neglect of Diatomic Differential Overlap Based Semiempirical Molecular Orbital Technique, Theoretical Chemistry Accounts, 110: 254–66 (2003).
[46] Grimme S., Semiempirical GGA‐type Density Functional Constructed with a Long‐Range Dispersion Correction, Journal of Computational Chemistry, 27: 1787−1799 (2006).
[47] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu, The Journal of Chemical Physics, 132: 154104 (1-19) (2010).
[48] Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory, Journal of Computational Chemistry , 32: 1456−1465 (2011).
[49] Grimme S.,  Accurate Description of Van Der Waals Complexes by Density Functional Theory Including Empirical Corrections, Journal of Computational Chemistry,  25: 1463–1473, (2004).
[50] Korth, M., Pitoňák, M., Řezáč, J., Hobza, P., A Transferable H-Bonding Correction for Semiempirical Quantum-Chemical MethodsJournal of Chemical Theory and Computation, 6: 344-352 (2010).
[51] Řezáč, J., Fanfrlík, J., Salahub, D. Hobza, P., Semiempirical Quantum Chemical PM6 Method Augmented by Dispersion and H-Bonding Correction Terms Reliably Describes Various Types of Noncovalent Complexes, Journal of Chemical Theory and Computation, 5: 1749– 1760 (2009).
[52] Korth, M., Empirical Hydrogen‐Bond Potential Functions- An Old Hat Reconditioned, Chemphyschem, 12: 3131-3142 (2011).
[53] Collignon, B., Hoang, P. N. M, Picaud, S., Liotard, D., Rayez, M. T., A Semi-Empirical Potential Model for Calculating Interactions Between Large Aromatic Molecules and Graphite SurfacesJournal of Molecular Structure: THEOCHEM, 772: 1–12 (2006).
[55] Tuttle, T. Thiel, W., OMx-D: Semiempirical Methods with Orthogonalization and Dispersion Corrections. Implementation and Biochemical Application, Physical Chemistry Chemical Physics, 10: 2159–2166 (2008).
[56] Durán-Lara, E. F., López-Cortés, X. A., Castro, R. I., Avila-Salas, F., González-Nilo, F. D., Laurie V. F. Santos, L. S., Experimental and Theoretical Binding Affinity Between Polyvinylpolypyrrolidone and Selected Phenolic Compounds From Food Matrices, Food Chemistry, 168: 464-470 (2015).
[57] Wang, Q. Bryce, R. A., Improved Hydrogen Bonding at the NDDO-Type Semiempirical Quantum Mechanical/Molecular Mechanical Interface, Journal of Chemical Theory and Computation, 5: 2206–2211(2009).
[58] Foster, M. E. Sohlberg, K., A New Empirical Correction to the AM1 Method for Macromolecular Complexes, Journal of Chemical Theory and Computation, 6: 2153–66 (2010).
[59] Korth, M., Third-Generation Hydrogen-Bonding Corrections for Semiempirical QM Methods and Force Fields, Journal of Chemical Theory and Computation, 6: 3808–3816 (2010).
[60] Řezáč, J. Hobza, P., A Halogen-Bonding Correction for the Semiempirical PM6 Method, Chemical Physics Letters, 506: 286–289 (2011).
[61] Řezáč, J., Riley K.E. Hobza., P., Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules, Journal of Chemical Theory and Computation, 8: 4285–4292 (2012).
[64] Laikov, D. N., A New Parametrizable Model of Molecular Electronic Structure, The Journal of Chemical Physics, 135: 134120 (2011).
[65] Řezáč, J. Hobza. P., Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods, Journal of  Chemical Theory and Computation, 8: 141–151 (2012).
[66] Foster, M. E. Sohlberg, K., Self-Consistent Addition of an Atomic Charge Dependent Hydrogen-Bonding Correction Function, Computational and Theoretical Chemistry, 984: 9–12 (2012).
[67] Anikin, N. A., Bugaenko, V.L., Kuzminskii, M. B. Mendkovich, A. S., Method for the Improved Semiempirical Description of Intermolecular Interactions of Biomolecules and Their Fragments, Russian Chemical Bulletin, 61: 12–16 (2012).
[68] Maia, J.D.C., Carvalho, G.A.U., Mangueira, C.P., Jr., Santana, S. R., Cabral, L. A. F. Rocha, G. B., GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations, Journal of Chemical Theory and Computation, 8: 3072–3081 (2012).
[69] Zhang, P., Fiedler, L., Leverentz, H. R., Truhlar, D. G. Gao, J., Polarized Molecular Orbital Model Chemistry. 2. The PMO Method, Journal of Chemical Theory and Computation, 7: 857–867 (2011).
[70] Isegawa, M., Fiedler, L., Leverentz, H.R., Wang, Y. Nachimuthu, S., Polarized Molecular Orbital Model Chemistry 3. The PMO Method Extended to Organic Chemistry, Journal of Chemical Theory and Computation, 9: 33–45 (2013).
[71] Fiedler, L., Leverentz, H.R., Nachimuthu, S., Friedrich, J. Truhlar, D.G., Nitrogen and Sulfur Compounds in Atmospheric Aerosols: A New Parametrization of Polarized Molecular Orbital Model Chemistry and Its Validation Against Converged CCSD(T) Calculations for Large Clusters, Journal of Chemical Theory and Computation, 10: 3129–3139 (2014).
[72] Sure, R. Grimme, S., Corrected Small Basis Set Hartree‐Fock Method for Large Systems, Journal of Computational Chemistry, 34: 1672–1685 (2013).
[73] Kromann, J.C., Christensen, A.S., Steinmann, C., Korth, M. Jensen, J.H., A Third-Generation Dispersion and Third-Generation Hydrogen Bonding Corrected PM6 Method: PM6-D3H+, Peer J, 2: e449 (2014).
[74] Brandenburg, J.G., Hochheim, M., Bredow, T. Grimme, S., Low-cost Quantum Chemical Methods for Noncovalent Interactions, Journal of Physical Chemistry Letters, 5: 4275–4284 (2014).
[75] Govender, K., Gao, J. Naidoo, K.J., AM1/D-CB1: A Semiempirical Model For QM/MM Simulations Of Chemical Glycobiology Systems, Journal of Chemical Theory and Computation, 10: 4694–4707 (2014).
[76] Govender, K.K. Naidoo, K.J., Evaluating AM1/D-CB1 For Chemical Glycobiology QM/MM Simulations Journal of Chemical Theory and Computation, 10: 4708–4717 (2014).
[77] Dral, P.O., Wu, X., Spörkel, L., Koslowski, A. Thiel, W. Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties. Journal of Chemical Theory and Computation. 12: 1097−1120 (2016).
[78] Ghosh, S., Andersen, A., Gagliardi, L., Cramer, C.J. Govind, N. Modeling Optical Spectra of Large Organic Systems Using Real-Time Propagation of Semiempirical Effective Hamiltonians. Journal of Chemical Theory and Computation, 13: 4410−4420 (2017).
[79] Husch, T., Vaucher , A.C.,  Reiher, M. Semiempirical Molecular Orbital Models Based on the Neglect of Diatomic Differential Overlap Approximation. International Journal of Quantum Chemistry, 118: e25799 (2018).
[80] Dral, P.O., Wu, X. Thiel, W. Semiempirical Quantum-Chemical Methods with Orthogonalization and Dispersion Corrections. Journal of Chemical Theory and Computation, 15: 1743−1760 (2019). 
[81] Prenosil, O., Pitonak, M., Sedlak, R., Kabelac, M. Hobza P., H-Bonding Cooperativity Effects in Amyloids: Quantum Mechanical and Molecular Mechanics Study, Zeitschrift für Physikalische Chemie, 225: 553–574 (2011). 
[82] Mikulskis, P., Genheden, S., Wichmann, K. Ryde, U., A Semiempirical Approach to Ligand‐Binding Affinities: Dependence on the Hamiltonian and Corrections, Journal of Computational Chemistry, 33: 1179– 1189 (2012).
[84] Hostaš, J., Řezáč, J. Hobza P., On the Performance of the Semiempirical Quantum Mechanical PM6 and PM7 Methods for Noncovalent Interactions, Chemical Physics Letters, 568: 161–166 (2013).
[85] Sedlak, R., Janowski, T., Pitoňák, M., Řezáč, J. Pulay, P., Accuracy of Quantum Chemical Methods for Large Noncovalent Complexes, Journal of Chemical Theory and Computation, 9: 3364–3374 (2013).
[86] Bulo, R.E., Michel, C., Fleurat-Lessard, P. Sautet, P., Multiscale Modeling of Chemistry in Water: Are We There Yet?, Journal of Chemical Theory and Computation, 9: 5567–5577 (2013).
[87] Wu, X., Thiel, W., Pezeshki, S. Lin, H., Specific Reaction Path Hamiltonian for Proton Transfer in Water: Reparameterized Semiempirical Models, Journal of Chemical Theory and Computation, 9: 2672–2686 (2013).
[88] Li, A., Muddana, H. S. Gilson, M. K., Quantum Mechanical Calculation of Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT Approaches Journal of Chemical Theory and Computation, 10: 1563–1575 (2014).
[90] Marion, A., Monard, G., Ruiz-Lopez, M. F. Ingrosso, F., Water Interactions with Hydrophobic Groups: Assessment and Recalibration of Semiempirical Molecular Orbital Methods, Journal of Chemical Physics, 141: 034106 (2014).
[91] Wang, S., MacKay, L. Lamoureux, G., Development of Semiempirical Models for Proton Transfer Reactions in Water, Journal of Chemical Theory and Computation, 10: 2881–2890 (2014).
[92] Yilmazer, N.D., Heitel, P., Schwabe, T. Korth, M., Benchmark of Electronic Structure Methods for Protein–Ligand Interactions Based on High-Level Reference Data, Journal of Theoretical and Computational Chemistry, 14: 1540001 (2015).
[93] Kamachi, T., Yoshizawa, K., Low-Mode Conformational Search Method with Semiempirical Quantum Mechanical Calculations: Application to Enantioselective Organocatalysis, Journal of chemical information and Modeling, 56: 347-353 (2016).
[94] Dral, P.O., Wu, X., Spörkel, L., Koslowski, A., Thiel, W., Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks for Ground-State Properties, Journal of chemical Theory and Computation, 12: 1097-1120 (2016).
[96] Krí̌ž, K. Řezáč, J. Reparametrization of the COSMO Solvent Model for Semiempirical Methods PM6 and PM7. Journal of Chemical Information and Modeling. 59: 229−235 (2019). 
[97] Fong, P., McNamara, J. P., Hillier, I. H. Bryce, R. A., Assessment of QM/MM Scoring Functions for Molecular Docking to HIV-1 Protease, Journal of Chemical Information and Modeling, 49: 913– 924 (2009).
[98] Fanfrlík J., Bronowska, A.K., Řezáč, J., Prenosil, O., Konvalinka, J. Hobza, P., A Reliable Docking/Scoring Scheme Based on the Semiempirical Quantum Mechanical PM6-DH2 Method Accurately Covering Dispersion and H-Bonding: HIV-1 Protease with 22 Ligands, The Journal of Physical Chemistry B, 114: 12666–12678 (2010).
[99] Dobeš, P., Fanfrlík, J., Řezáč, J., Otyepka M. Hobza, P., Transferable Scoring Function Based on Semiempirical Quantum Mechanical PM6-DH2 Method: CDK2 with 15 Structurally Diverse Inhibitors, Journal of Computer-Aided Molecular Design, 25: 223–235 (2011).
[100] Jilkova A., Rezacova, P., Lepsik, M., Horn, M., Vachova, J., Fanfrlík, J., Brynda, J., McKerrow, J. H., Caffrey, C. R. Mares, M., Structural Basis for Inhibition of Cathepsin B Drug Target from the Human Blood Fluke, Schistosoma Mansoni, Journal of Biological Chemistry, 286: 35770–35781 (2011).
[101] Fanfrlík J., Brahmkshatriya P.S., Řezáč J., Jilkova A., Horn M., Mares M., Hobza Pو Lepsik M., Quantum Mechanics-Based Scoring Rationalizes the Irreversible Inactivation of Parasitic Schistosoma mansoni Cysteine Peptidase by Vinyl Sulfone Inhibitors, The Journal of Physical Chemistry B, 117: 14973–14982 (2013).
[102] Nagy, G., Gyurcsik, B., Hoffmann, E.A. Körtvélyesi, T., Theoretical Design of a Specific DNA–Zinc-Finger Protein Interaction with Semi-Empirical Quantum Chemical Methods, Journal of Molecular Graphics and Modelling, 29: 928–934 (2011).
[103] Kamel, K. Kolinski, A., Computational Study of Binding of Epothilone A to β-Tubulin,  Acta Biochimica Polonica, 58: 255–260 (2011).
[104] Kamel, K. Kolinski, A., Assessment of the Free Binding Energy of 1, 25-Dihydroxyvitamin D3 and Its Analogs with the Human VDR Receptor Model. Acta Biochimica Polonica, 59: 653–660 (2012).
[105] Avila-Salas, F., Sandoval, C., Caballero, J., Guiñez-Molinos, S., Santos, L.S., Cachau, R.E. González-Nilo, F.D., Study of Interaction Energies between the PAMAM Dendrimer and Nonsteroidal Anti-Inflammatory Drug Using a Distributed Computational Strategy and Experimental Analysis by ESI-MS/MS, The Journal of Physical Chemistry B, 116: 2031–2039 (2012).
[106] Benson, M.L., Faver, J.C., Ucisik, M.N., Dashti, D.S., Zheng, Z. and Kenneth, M.M., Jr., Prediction of Trypsin/Molecular Fragment Binding Affinities by Free Energy Decomposition and Empirical Scores, Journal of Computer-Aided Molecular Design, 26: 647–659 (2012).
[107] Quevedo, R., Nunez-Dallos, N., Wurst, K. and Duarte-Ruiz, A., A Structural Study of the Intermolecular Interactions of Tyramine in the Solid State and in Solution, Journal of Molecular Structure, 1029: 175–179 (2012).
[108] Stigliani, J. -L., Bernardes-Genisson, V., Bernadou, J. and Pratviel, G., Cross-Docking Study on Inha Inhibitors: A Combination of Autodock Vina and PM6-DH2 Simulations to Retrieve Bio-Active Conformations, Organic and Biomolecular Chemistry, 10: 6341–6349 (2012).
[109] Pan, X. -L., Liu, W. Liu, J. -Y., Mechanism of the Glycosylation Step Catalyzed by Human α-Galactosidase: A QM/MM Metadynamics Study, The Journal of Physical Chemistry B, 117: 484–489 (2013).
[111] Ucisik, M.N., Zheng, Z., Faver, J.C. Merz, K.M., Bringing Clarity to the Prediction of Protein–Ligand Binding Free Energies via “Blurring”,  Journal of Chemical Theory and Computation, 10: 1314–1325 (2014).
[112] Temelso, B., Alser, K.A., Gauthier, A., Palmer, A.K. Shields, G.C., Structural Analysis of α-Fetoprotein (Afp)-Like Peptides with Anti-Breast-Cancer Properties, The Journal of Physical Chemistry B, 118: 4514–4526 (2014).
[113] Pavlicek, J., Ptacek, J., Cerny, J., Byun, Y., Skultetyova, L., Pomper, M.G., Lubkowski, J. Barinka, C., Structural Characterization of P1′-Diversified Urea-Based Inhibitors of Glutamate Carboxypeptidase II,  Bioorganic & Medicinal Chemistry Letters, 24: 2340–2345 (2014).
[114] Vorlová, B., Nachtigallová, D., Jirásková-Vaníčková, J., Ajani, H., Jansa, P., Rezáč, J., Fanfrlík, J., Otyepka, M., Hobza, P., Konvalinka, J. Lepšík, M., Malonate-Based Inhibitors of Mammalian Serine Racemase: Kinetic Characterization and Structure-Based Computational Study, European Journal of Medicinal Chemistry, 89: 189– 197 (2015).
[116] Pecina, A., Haldar, S., R., Fanfrlík, J.,, SQM/COSMO Scoring Function at the DFTB3-D3H4 Level: Unique Identification of Native Protein–Ligand Poses, Journal of Chemical Information and Modeling, 57: 127-132 (2017).
[117] Pecina, A., Brynda, J., Vrzal, L., et. al., Ranking Power of the SQM/COSMO Scoring Function on Carbonic Anhydrase II–Inhibitor Complexes, ChemPhysChem, 19: 873-879 (2018).
[118] Peng, C., Wang, J., Yu, Y., Wang, G.,, Improving the Accuracy of Predicting Protein–Ligand Binding-Free Energy with Semiempirical Quantum Chemistry Charge, Future Medicinal Chemistry, 11: 303–332 (2019).
[119] Krí̌žand, K. Řezać, J. Benchmarking of Semiempirical Quantum-Mechanical Methods on Systems Relevant to Computer, Aided Drug Design. Journal of Chemical Information and Modeling, 60: 1453−1460 (2020). 
[120] Bagheri, S., Behnejad, H., Firouzi, R. Karimi-Jafari, M. H. Using the Semiempirical Quantum Mechanics in Improving the Molecular Docking: A Case Study with CDK2. Molecular Informatic, 39: 2000036 (2020). 
[121] Todoroki, K., Nakano, T., Watanabe, H., Min, J. Z. Inoue, K., Computational Prediction of Diastereomeric Separation Behavior of Fluorescent o-Phthalaldehyde Derivatives of Amino Acids,  Analytical Sciences, 30: 865– 870 (2014).
[122] Dresselhaus, T., Weikart, N. D., Mootz, H. D. Waller, M. P., Naturally and Synthetically Linked lys48 Diubiquitin: a QM/MM Study, RSC Advances, 3: 16122– 16129 (2013).
[123] Fanfrlík, J., Kolář, M., Kamlar, M., Hurny, D. Ruiz, F.X., Cousido-Siah, A., Mitschler, A.,  Řezáč, J., Munusamy, E., Lepsik, M., Matejicek, P, Vesely, J., Podjarny, A. Hobza, P., Modulation of Aldose Reductase Inhibition by Halogen Bond Tuning, ACS Chemical Biology, 8: 2484–2492 (2013).
[124]  Cousido-Siah  A., X. Ruiz F., Fanfrlík J., Giménez-Dejoz J., Mitschler A.,  Kamlar M., Veselý J.,  Ajani H., Parés X., Farrés J., Hobza P., Podjarny A., IDD388 Polyhalogenated Derivatives as Probes for an Improved Structure-Based Selectivity of AKR1B10 Inhibitors, ACS Chemical Biology, 11: 2693–2705 (2016). 
[125] Waller, M.P., Kumbhar, S. Yang, J., A Density‐Based Adaptive Quantum Mechanical/Molecular Mechanical Method,  Chemphyschem, 15: 3218–3225 (2014).
[126] Borbulevych, O. Y., Plumley, J. A., Martin, R. I., Merz, K. M., Jr. Westerhoff, L. M., Accurate Macromolecular Crystallographic Refinement: Incorporation of the Linear Scaling, Semiempirical Quantum-Mechanics Program DivCon into the PHENIX Refinement Package, Acta Crystallographica Section D: STRUCTURAL BIOLOGY, 70: 1233–1247 (2014).
[127] Dresselhaus, T., Yang, J., Kumbhar, S. Waller, M. P., Hybrid Metaheuristic Approach for Nonlocal Optimization of Molecular Systems, Journal of Chemical Theory and Computation, 9: 2137–2149 (2013).
[128] Morales-Toyo, M., Alvarado, Y. J., Restrepo, J., Seijas, L., Atencio, R. BrunoColmenarez, J., Synthesis, Crystal Structure Analysis, Small Cluster Geometries and Energy Study of (E)-Ethyl-4-(2-(thiofen-2-ylmethylene)hydrazinyl)benzoate, Journal of Chemical Crystallography, 43: 544–549 (2013).
[129] Nunez-Dallos, N., Reyes, A. Quevedo, R., Hydrogen Bond Assisted Synthesis of Azacyclophanes from l-Tyrosine Derivatives, Tetrahedron Letters, 53: 530–534 (2012).
[130] Lukas, M., Meded, V., Vijayaraghavan A., Song L., Ajayan, P. M., Fink, K., Wenzel, W., Krupke, R., Catalytic Subsurface Etching of Nanoscale Channels in Graphite, Nature Communications, 4: 1379 (2013).
[131] Cousins, B. G., Das, A. K., Sharma, R., Li, Y., McNamara, J. P., Hillier, I. H., Kinloch, I. A., Ulijn, R. V., Enzyme‐Activated Surfactants for Dispersion of Carbon Nanotubes, Small, 5: 587–590 (2009).
[132] McNamara, J.P., Sharma, R., Vincent, M.A., Hillier, I. H. Morgado, C.A., The Non-Covalent Functionalisation of Carbon Nanotubes Studied by Density Functional and Semi-Empirical Molecular Orbital Methods Including Dispersion Corrections, Physical Chemistry Chemical Physics, 10: 128–135 (2008).
[133] Robert, P.T., Danneau, R., Charge Distribution of Metallic Single Walled Carbon Nanotube–Graphene Junctions, New Journal of Physics, 16: 013019 (2014).
[134] Ramraj, A., Hillier, I.H., Vincent, M.A. Burton, N.A., Assessment of Approximate Quantum Chemical Methods for Calculating the Interaction Energy of Nucleic Acid Bases with Graphene and Carbon Nanotubes, Chemical Physics Letters, 484: 295–298 (2010).
[135] Araujo, R.F., Silva, C.J.R., Paiva, M. C., Franco, M.M. Proenca, M.F., Efficient Dispersion of Multi-Walled Carbon Nanotubes in Aqueous Solution by Non-Covalent Interaction with Perylene Bisimides, RSC Advances, 3: 24535–24542 (2013).
[136] Rappoport, D., Galvin, C.J., Zubarev, D. Y. Aspuru-Guzik, A., Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry,  Journal of Chemical Theory and Computation, 10: 897–907 (2014).