Synthesis of Nickel/UIO-66 Catalyst for the ODH Process of Propane at Low-Temperatures

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran

2 Department of Chemical Engineering,Faculty of Engineering, Quchan University of Technology, Quchan, Iran

3 Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran,

4 Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

In this paper, the possibility of using Metal-organic framework UIO-66 in the propane ODH process at low temperatures was investigated. In this process, Nickel (Ni) was used as the main catalyst with the loading of 5, 15 and 25 (wt%) on support and O2 gas as oxidant. In order to accurately examine and determine the optimal state, the experimental design during the work was assisted. The effect of three parameters such as reaction temperature, Volumetric flow rate (sccm) and Ni loading (wt%) at three levels of -1, 0 and +1 was investigated. For better dispersion of nickel catalyst on the synthesized support, the ultrasonic method was used to synthesize the catalyst. As a result, it led to the top-loading of the catalyst with the form of a monolayer on the support. The catalyst structure was evaluated using various characterization methods including XRD, BET, SEM and EDX. In this study, the synthesized Metal-organic framework UIO-66 has a surface area of 1327.42 m2/g. Ultrasonic-synthesized nickel catalysts, due to their higher specific surface area and better nickel distribution on the synthesized catalyst, 17% by weight of vanadium oxide based on UIO-66 were able to 5.98% conversion and with 55.7% selectivity of propylene at 325 oC.

Keywords

Main Subjects


[1] Liu, Y.M., Wang, L.C., Chen, M., Xu, J., Cao, Y., He, H.Y., Fan, K.N., Highly Selective Ce–Ni–O Catalysts for Efficient Low Temperature Oxidative Dehydrogenation of Propane. Catal. Letters, 130(3-4): 350-354 (2009).
[2] Saei moghaddam, M., Nasehi, P Asadi, R., Oxidative Dehydrogenation of Propane with CO2 Oxidant over Vanadium Catalyst Supported on Titania-Silicon Nanostructures, J. App. Research of Chem. -Polymer Eng. 2: 65-74 (2019).
[4] Ivan, Ş.B., Fechete, I., Papa, F., Marcu, I.C., x. Ethane Oxydehydrogenation over TiP2O7-Supported NiO Catalysts. Catal. Today (2014).
[6] Saei Moghaddam, M., Towfighi, J., Vanadium Oxide Supported on Al-Modified Titania Nanotubes for Oxidative Dehydrogenation of Propane. J. Chem. and Petrol. Eng, 51(2): 113-121 (2017).
[7] Varzaneh, A.Z., Moghaddam, M.S., Darian, J.T., Oxidative Dehydrogenation of Propane over Vanadium Catalyst Supported on Nano-HZSM-5. Petrol. Chem, 58(1): 13-21 (2018).
[8] Goudarzi, E., Asadi, R., Darian, J.T., Kootenaei, A.S., The Stability and Catalytic Performance of K-Modified Molybdena Supported on a Titanate Nanostructured Catalyst in the Oxidative Dehydrogenation of Propane. RSC Advances, 9(21): 11797-11809 (2019).
[9] Liu, X., Duan, L., Yang, W., Zhu, X., X Oxidative Dehydrogenation of N-butane to Butenes on Mo-Doped VMgO Catalysts. RSC Advances, 7(54): 34131-34137 (2019).
[11] Gannoun, C., Turki, A., Kochkar, H., Delaigle, R., Eloy, P., Ghorbel, A., Gaigneaux, E.M., Elaboration and Characterization of Sulfated and Unsulfated V2O5/TiO2 Nanotubes Catalysts for Chlorobenzene Total Oxidation. App. Catal. B: Environ., 147: 58-64 (2014).
[13] Kootenaei, A.S., Towfighi, J., Khodadadi, A., Mortazavi, Y., Stability and Catalytic Performance of Vanadia Supported on Nanostructured Titania Catalyst in Oxidative Dehydrogenation of Propane. App. surf. sci, 298: 26-35 (2014).
[16] Botavina, M.A., Agafonov, Y.A., Gaidai, N.A., Groppo, E., Corberán, V.C., Lapidus, A.L., Martra, G.,  Towards Efficient Catalysts for the Oxidative Dehydrogenation of Propane in the Presence of CO2: Cr/SiO2 Systems Prepared by Direct Hydrothermal Synthesis. Catal. Sci. & Tech., 6(3): 840-850 (2015).
[17] Moparthi, A., Uppaluri, R., Gill, B.S., Economic Feasibility of Silica and Palladium Composite Membranes for Industrial Dehydrogenation Reactions. Chem. Eng. Research and Design, 88(8): 1088-1101 (2010).
[18] Kawi, S., Kathiraser, Y., Ni, J., Oemar, U., Li, Z., Saw, E.T., Progress in Synthesis of Highly Active and Stable Nickel‐based Catalysts for Carbon Dioxide Reforming of Methane. Chem. Sus. Chem, 8(21): 3556-3575 (2015).
[19] Kim, S.J., Yun, Y.U., Oh, H.J., Hong, S.H., Roberts, C.A., Routray, K., Wachs, I.E., Characterization of Hydrothermally Prepared Titanate Nanotube Powders by Ambient and in Situ Raman Spectroscopy.  J. Phys. Chem. Letters, 1(1): 130-135 (2010).
[20] Kim, J., Kim, S.N., Jang, H.G., Seo, G., Ahn, W.S., CO2 Cycloaddition of Styrene Oxide over MOF Catalysts. App. Catal. A: General, 453: 175-180 (2013).
[21] Cheknoun, S., Mansouri, S., Benlounes, O., Hocine, S., Oxidative Dehydrogenation (ODH) of Ethylbenzene with  N2O over Heteropolycompounds. J. Chem. Sci., 130(4): 40 (2018).
[22] Gao, Y., Wang, B., Yan, B., Li, J., Alam, F., Xiao, Z., Jiang, T., Catalytic Oxidative Dehydrogenation of 1-butene to 1, 3-butadiene with CO2 over Fe2O3/γ-Al2O3 Catalysts: The Effect of Acid or Alkali Modification. Reac. Kinet, Mech. and Catal, 122(1): 451-462 (2017).
[23] Bulánek, R., Čičmanec, P., Kotera, J., Boldog, I., Efficient Oxidative Dehydrogenation of Ethanol by VOx@ MIL-101: On par with VOx/ZrO2 and Much Better than MIL-47 (V). Catal. Today, 324: 106-114 (2019).
[24] Hu, Z., Peng, Y., Kang, Z., Qian, Y., Zhao, D., A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-type MOFs. Inorganic Chem, 54(10): 4862-4868 (2015).
[25] Katz, M.J., Brown, Z.J., Colón, Y.J., Siu, P.W., Scheidt, K.A., Snurr, R.Q., Hupp, J.T., Farha, O.K., A Facile Synthesis of UiO-66, UiO-67 and Their Derivatives. Chem. Comm., 49(82): 9449-9451 (2013).
[26] Singh, R.P., Bañares, M.A., Deo, G., Effect of Phosphorous Modifier on V2O5/TiO2 Catalyst: ODH of Propane. J. Catal, 233(2): 388-398 (2005).
[27] Korzyński, M.D., Dincă, M., Oxidative Dehydrogenation of Propane in the Realm of Metal–Organic Frameworks. ACS Cent. Sci. 3(1): 10-12 (2017).
[28] Li, Z., Peters, A.W., Bernales, V., Ortuño, M.A., Schweitzer, N.M., DeStefano, M.R., Gallington, L.C., Platero-Prats, A.E., Chapman, K.W., Cramer, C.J., Gagliardi, L., Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature. ACS cent. sci, 3(1): 31-38 (2017).
[29] Heracleous, E., Machli, M., Lemonidou, A.A., Vasalos, I.A., Oxidative Dehydrogenation of Ethane and Propane over Vanadia and Molybdena Supported Catalysts. J. Mol. Catal. A: Chem., 232(1-2): 29-39 (2017).
[30] Thakkar, H., Eastman, S., Al-Mamoori, A., Hajari, A., Rownaghi, A.A., Rezaei, F., Formulation of Aminosilica Adsorbents into 3D-Printed Monoliths and Evaluation of Their CO2 Capture Performance. ACS App. Mat. & Inter, 9(8): 7489-7498 (2017).
[31] Lamia, N., Wolff, L., Leflaive, P., Sá Gomes, P., Grande, C.A., Rodrigues, A.E., Propane/propylene Separation by Simulated Moving Bed I. Adsorption of Propane, Propylene and Isobutane in Pellets of 13X ZeoliteSep. Sci. and Tech., 42(12): 2539-2566 (2007).
[33] Kondratenko, E.V., Baerns, M., Catalytic Oxidative Dehydrogenation of Propane in the Presence of O2 and N2O- the Role of Vanadia Distribution and Oxidant Activation. App. Catal.s A: General, 222(1-2): 133-143 (2001).
[34] Al-Ghamdi, S., Moreira, J., De Lasa, H., Kinetic Modeling of Propane Oxidative Dehydrogenation over VO x/γ-Al2O3 Catalysts in the Chemical Reactor Engineering Center Riser Reactor Simulator. Indust. & Eng. Chem. Research, 53(40): 15317-15332 (2014).
[35] Liu, Y., Jiang, C., Chu, W., Sun, W., Xie, Z.,  Novel F–V2O5/SiO2 Catalysts for Oxidative Dehydrogenation of Propane. Reaction Kinetics, Mech. and Catal, 101(1): 141-151 (2010).
[36] فیروزی، محمد.، بقالها، مرتضی.، اسدی، موسی.، 'سنتز زئولیت ZSM-5 به عنوان کاتالیست فرایند تبدیل متانول به پروپیلن'، نشریه شیمی و مهندسی شیمی ایران، (2)31: 21تا26 (1391).