High-pressure viscosities of fatty acid esters and biodiesels from a new thermodynamic model

Document Type : Research Article

Authors

1 Department of Chemistry, University of Hormozgan, Bandar Abbas, Iran

2 Department of Chemistry, Shiraz University of Technology, Shiraz, Iran

Abstract

This work deals with the modeling of dynamic viscosities of several fatty acid esters (FAEs) and biodiesels based on the friction theory (FT) along with a perturbed hard-dimer-chain equation of state (PHDC EOS). The model used three molecular parameters (ε, σ, m) and liquid density as well, all of which were estimated from the PHDC EOS. The PHDC EOS could predict the density and isothermal compressibility coefficients in 278.15-393.15 K range and pressures up to 210 MPa with the average absolute relative deviations (AARDs) of 0.52% and 4.77%, respectively. Then, the proposed FT-based model has been employed for predicting the dynamic viscosities of several FAEs and biodiesels in 293.15-393.15 K and pressures up to 200 MPa. The model predicted 892 experimental data points for dynamic viscosities of 10 FAEs and 3 biodiesels with the AARD of 1.70%.

Keywords

Main Subjects


[1] Pandey A., "Handbook of Plant-Based Biofuels", CRC Press, (2008).
[2] Goyal H.B., Saxena R.C., Seal D., "Thermochemical Conversion of Biomass to Liquids and Gaseous Fuels", CRC Press, Taylor & Francis Group, (2008).
[3] Suh H.K.,Lee C.S., A Review on Atomization and Exhaust Emissions of a Biodiesel-Fueled Compression Ignition Engine, Renew Sustain Energy Rev, 58: 1601-1620 (2016).
[4] Xue J., Grift T.E., Hansen A.C., Effect of Biodiesel on Engine Performances and Emissions, Renew Sustain Energy Rev, 15(2): 1098-1116 (2011).
[5] Do Carmo F., Sousa Jr P., Santiago-Aguiar R., de Sant’Ana H., Development of a New Model for Biodiesel Viscosity Prediction Based on the Principle of Corresponding State, Fuel, 92(1): 250-257 (2012).
[6] Ceriani R., Gonçalves C.B., Rabelo J., Caruso M., Cunha A.C., Cavaleri F.W., Batista E.A., Meirelles A.J., Group Contribution Model for Predicting Viscosity of Fatty Compounds, J. Chem. Eng. Data, 52(3): 965-972 (2007).
[7] Yuan W., Hansen A.C., Zhang Q., Predicting The Temperature Dependent Viscosity Of Biodiesel Fuels, Fuel, 88(6): 1120-1126 (2009).
[8] Verduzco L.F.R., Density and Viscosity of Biodiesel as a Function of Temperature: Empirical Models, Renew Sustain Energy Rev., 19: 652-665 (2013).
[9] Chavarria-Hernandez J.C.,Pacheco-Catalán D.E., Predicting the Kinematic Viscosity of FAMEs and Biodiesel: Empirical Models, Fuel, 124: 212-220 (2014).
[11] Rocabruno-Valdés C., Ramírez-Verduzco L., Hernández J., Artificial Neural Network Models to Predict Density, Dynamic Viscosity, and Cetane Number of Biodiesel, Fuel, 147: 9-17 (2015).
[12] Krisnangkura K., Aryusuk K., Phankosol S., Lilitchan S., Energy Additivity Approaches to QSPR Modeling in Estimation of Dynamic Viscosity of Fatty Acid Methyl Ester and Biodiesel, J. Am. Oil Chem. Soc., 93(10): 1407-1414 (2016).
[13] Chum-in T., Sudaprasert K., Phankosol S., Lilitchan S., Aryusuk K., Krisnangkura K., Gibbs Energy Additivity Approaches to QSPR in Modeling of High Pressure Dynamic Viscosity of FAME and Biodiesel, J. Mol. Liq., 223: 1006-1012 (2016).
[14] Chum-in T., Sudaprasert K., Phankosol S., Lilitchan S., Aryusuk K., Krisnangkura K., Gibbs Energy Additivity Approaches to QSPR in Modeling of High Pressure Density and Kinematic Viscosity of FAME and Biodiesel, Fuel Process. Technol., 156: 385-393 (2017).
[15] Aminian A.,Zare Nezhad B., Accurate Predicting the Viscosity of Biodiesels and Blends Using Soft Computing Models, Renew Energy, 120: 488-500 (2018).
[17] Chandler D., Rough Hard Sphere Theory of the Self‐Diffusion Constant for Molecular Liquids, J. Chem. Phys., 62(4): 1358-1363 (1975).
[18] Roosta A., Bardool R., A Predictive Correlation for Dynamic Viscosity of Fatty Acid Methyl Esters and Biodiesel, J. Am. Oil Chem. Soc., 96: 741-750 (2019).
[20] Hosseini S.M., Alavianmehr M.M., Moghadasi J., Transport Properties of Pure and Mixture of Ionic Liquids from New Rough Hard-Sphere-Based Model, Fluid Phase Equilib, 429: 266-274 (2016).
[21] Hosseini S.M., Alavianmehr M.M., Moghadasi J., On the Rough Hard-Sphere-Based Model for Transport Properties of Nanofluids, Fluid Phase Equilib, 458: 186-193 (2018)
[22] Quiñones-Cisneros S.E., Zéberg-Mikkelsen C.K., Stenby E.H., The Friction Theory (F-Theory) for Viscosity Modeling, Fluid Phase Equilib, 169(2): 249-276 (2000).
[23] Quiñones-Cisneros S.E., Zéberg-Mikkelsen C.K., Stenby E.H., One Parameter Friction Theory Models for Viscosity, Fluid Phase Equilib, 178(1-2): 1-16 (2001).
[24] Quiñones‐Cisneros S.E., Zéberg‐Mikkelsen C.K., Fernández J., García J., General Friction Theory Viscosity Model for the PC‐SAFT Equation of State, AlChE J., 52(4): 1600-1610 (2006).
[25] Burgess W.A., Tapriyal D., Gamwo I.K., Morreale B.D., McHugh M.A., Enick R.M., Viscosity Models Based on the Free Volume and Frictional Theories for Systems at Pressures to 276 MPa and Temperatures to 533 K, Ind. Eng. Chem. Res., 51(51): 16721-16733 (2012).
[26] Hosseini S., Alavianmehr M., Moghadasi J., A Perturbed Hard-Dimer Chain Equation of State for Polymer Melts, J. Non-Cryst. Solids, 362: 195-200 (2013).
[27] Hosseini S., Alavianmehr M., Moghadasi J., Density and Isothermal Compressibility of Ionic Liquids from Perturbed Hard-Dimer-Chain Equation of State, Fluid Phase Equilib, 356: 185-192 (2013).
[28] Parvaneh K., Haghbakhsh R., Rahimpour M.R., High Pressure Viscosity Modeling of Pure Alcohols Based on Classical and Advanced Equations of State, J. Taiwan Inst. Chem. Engrs, 58: 57-70 (2016).
[30] Haghbakhsh R., Raeissi S., Parvaneh K., Shariati A., The Friction Theory for Modeling the Viscosities of Deep Eutectic Solvents Using the CPA and PC-SAFT Equations of State, J. Mol. Liq., 249: 554-561 (2018).
[31] Macías-Salinas R., Viscosity Modeling of Ionic Liquids Using the Friction Theory and a Simple Cubic Equation of State, Ind. Eng. Chem. Res., 57(3): 1109-1120 (2018).
[32] Abutaqiya M.I., Zhang J., Vargas F.M., Viscosity Modeling of Reservoir Fluids Using the Friction Theory with PC-SAFT Crude Oil Characterization, Fuel, 235: 113-129 (2019).
[33] Chung T.H., Ajlan M., Lee L.L., Starling K.E., Generalized Multiparameter Correlation for Nonpolar and Polar Fluid Transport Properties, Ind. Eng. Chem. Res., 27(4): 671-679 (1988).
[34] Chapman S.,Cowling T., "The Mathematical Theory of Non-uniform Gases", Cambridge University Press, Cambridge, (1970).
[35] Zéberg-Mikkelsen C.K., Quiñones-Cisneros S.E., Stenby E.H., Viscosity Modeling of Associating Fluids Based on the Friction Theory: Pure Alcohols, Fluid Phase Equilib, 194:1191-1203 (2003).
[36] Abolala M., Peyvandi K., Varaminian F., Modeling the Viscosity of Pure Imidazolium-Based Ionic Liquids using SAFT-VR-Mie EoS, Fluid Phase Equilib, 394: 61-70 (2015).
[37] Pratas M.J., Oliveira M.B., Pastoriza-Gallego M.J., Queimada A.J., Pineiro M.M., Coutinho J.A., High-Pressure Biodiesel Density: Experimental Measurements, Correlation, and Cubic-Plus-Association Equation of State (CPA EoS) Modeling, Energy Fuels, 25(8): 3806-3814 (2011).
[38] Wang X., Kang K., Zhu S., Gao B., High-Pressure Liquid Densities of Fatty Acid Methyl Esters: Measurement and Prediction with PC-SAFT Equation of State, Fluid Phase Equilib, 471: 8-16 (2018).
[41] Dzida M., Jężak S., Sumara J., Żarska M., Góralski P., High-Pressure Physicochemical Properties of Ethyl Caprylate and Ethyl Caprate, J Chem Eng Data, 58(7): 1955-1962 (2013).
[42] Ndiaye E.H.I., Habrioux M., Coutinho J.o.A., Paredes M.r.L., Daridon J.L., Speed of Sound, Density, and Derivative Properties of Ethyl Myristate, Methyl Myristate, and Methyl Palmitate Under high Pressure, J Chem Eng Data, 58(5): 1371-1377 (2013).
[43] Aissa M.A., Ivaniš G.R., Radović I.R., Kijevčanin M.L., Experimental Investigation and Modeling of Thermophysical Properties of Pure Methyl and Ethyl Esters at High Pressures, Energy Fuels, 31(7): 7110-7122 (2017).
[44] Żarska M., Bartoszek K., Dzida M., High Pressure Physicochemical Properties of Biodiesel Components Derived from Coconut Oil or Babassu Oil, Fuel, 125: 144-151 (2014).
[45] Wang X., Kang K., Lang H., High-Pressure Liquid Densities and Derived Thermodynamic Properties for Methyl Laurate and Ethyl Laurate, J. Chem. Thermodyn., 103: 310-315 (2016).
[47] Dzida M., Jężak S., Sumara J., Żarska M., Góralski P., High Pressure Physicochemical Properties of Biodiesel Components used for Spray Characteristics in Diesel Injection Systems, Fuel, 111: 165-171 (2013).
[48] Liu X., Lai T., Guo X., He M., Dong W., Shang T., Yang W., Densities and Viscosities of Ethyl Heptanoate and Ethyl Octanoate at Temperatures from 303 to 353 K and at Pressures up to 15 MPa, J Chem Eng Data, 62(8): 2454-2460 (2017).
[49] Habrioux M., Freitas S.V., Coutinho J.o.A., Daridon J.L., High Pressure Density and Speed of Sound in Two Biodiesel Fuels, J. Chem. Eng. Data, 58(12): 3392-3398 (2013)
[50] Habrioux M., Bazile J.-P., Galliero G., Daridon J.L., Viscosities of Fatty Acid Methyl and Ethyl Esters Under High Pressure: Methyl Caprate and Ethyl Caprate, J. Chem. Eng. Data, 60(3): 902-908 (2015)
[51] Habrioux M., Bazile J.-P., Galliero G., Daridon J.L., Viscosities of Fatty Acid Methyl and Ethyl Esters Under High Pressure: Methyl Myristate and Ethyl Myristate, J. Chem. Eng. Data, 61(1): 398-403 (2016).
[53] Freitas S.V., Segovia J.J., Martín M.C., Zambrano J., Oliveira M.B., Lima Á.S., Coutinho J.A., Measurement and Prediction of High-Pressure Viscosities of Biodiesel Fuels, Fuel, 122: 223-228 (2014)
[54] Wang X.-Y.,Chiew Y.C., Thermodynamic and Structural Properties of Yukawa Hard Chains, J. Chem. Phys., 115(9): 4376-4386 (2001).
[55] Davies L.A., Gil-Villegas A., Jackson G., An Analytical Equation of State for Chain Molecules Formed from Yukawa Segments, J. Chem. Phys., 111(18): 8659-8665 (1999).
[56] Hosseini S., Papari M., Moghadasi J., Density and Isothermal Compressibility of Ionic Liquids from Perturbed Hard-Sphere Chain Equation of State, J. Mol. Liq., 174: 52-57 (2012).
[57] Schedemann A., Wallek T., Zeymer M., Maly M., Gmehling J., Measurement and Correlation of Biodiesel Densities at Pressures Up to 130 MPa, Fuel, 107: 483-492 (2013).