Evaluation of Sr-Ce-ZnO/HAp Nanocomposite in Photocatalytic Degradation of Rhodamine B Pollutant in the Presence of Visible Light

Document Type : Research Article


Department of Inorganic Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran 15418, Iran.


In this study, the synthesis and characterization of Sr-Ce-ZnO/HAp nanocomposite in the degradation of rhodamine B under visible light was investigated. Structure of Sr-Ce-ZnO/HAp nanocomposite identified by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy diffraction (EDX) spectroscopy (visible-spectrophotometer) UV-Vis and adsorption/desorption porosimetry were confirmed by BET analysis. Evaluations showed that adopted with metal cations and the presence of hydroxyapatite reduced energy gap, increased surface area, increased adsorption and decreased electron-hole recombination. As a result, it significantly increases the photocatalytic activity of Sr-Ce-ZnO/HAp nanocomposite compared to other prepared nanoparticles. The results also showed that more than 91% of rhodamine B was removed within 90 minutes after the start of the reaction. The first-order reaction constant and the rate constant of 0.023 min-1 were obtained.


Main Subjects

[1] Wang J., Fan X. M., Wu D. Z., Dai J., Liu H., Liu H. R., Zhou Z. W. Fabrication of CuO/T-ZnOw Nanocomposites using Photo-Deposition and their Photocatalytic Property. Appl. Surf. Sci., 258: 1797-1805 (2011).
[2] Abdussalam-Mohammed W., Qasem Ali A., Errayes O.A., Green Chemistry: Principles, Applications, and Disadvantages, Chem. Methodol., 4:408-423 (2020).
[3] Bader N., Hasan H., EL-Denali A. Determination of Cu, Co, and Pb in Selected Frozen Fish Tissues Collected from Benghazi Markets in Libya, Chem. Methodol., 2:56-63 (2018).
[5] Chong M. N., Jin B., Chow C. W., Saint C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res., 44: 2997-3027 (2010).
[7] Haaken D., Schmalz V., Dittmar T., Worch E. Limits of UV Disinfection: UV/Electrolysis Hybrid Technology as a Promising Alternative for direct reuse of biologically treated wastewater. J. Water Supply Res. Technol., 62: 442-451 (2013).
[8] Derakhshan-Nejad A., Cheraghi M., Rangkooy H., Jalillzadeh Yengejeh R., Photo Catalytic Activity of TiO2 Immobilized on a 13X Zeolite Based in Removal of Ethyl Benzene Vapors under Visible Light Irradiation, Chem. Methodol., 5:50-58 (2021).
[9] Chong M.N., Jin B., Chow C.W., Saint C., Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res., 44: 2997-3027 (2010).
[10] Nik Athirah Y., Ong S. A., Ho L. N., Wong Y. S., Wan Fadhilah K. Degradation of Phenol through Solar-Photocatalytic Treatment by Zinc Oxide in Aqueous Solution. Desalination Water Treat., 54: 1621-1628 (2015).
[11] Ali I. New Generation Adsorbents for Water Treatment. Chem. Rev., 112: 5073-5091 (2012).
[12] Abbasi M. A., Ibupoto Z. H., Khan A., Nur O., Willander M. Fabrication of UV Photo-Detector based on Coral Reef Like p-NiO/n-ZnO Nanocomposite Structures. Mater. Lett., 108: 149-152 (2013).
[13] Bai X., Wang L., Zong R., Lv Y., Sun Y., Zhu Y., Performance Enhancement of ZnO Photocatalyst via Synergic Effect of Surface Oxygen Defect and Graphene Hybridization. Langmuir. 29: 3097-3105 (2013).
[14] Von Wenckstern, H., Schmidt H., Brandt M., Lajn A., Pickenhain R., Lorenz M., Grundmann M., Hofmann D.M., Polity A., Meyer B.K. Saal H. Anionic and Cationic Substitution in ZnO. Prog. Solid. State Chem, 37: 153-172 (2009).
[16] Lv H., Ji G., Yang Z., Liu Y., Zhang X., Liu W., Zhang H. Enhancement Photocatalytic Activity of the Graphite-Like C3N4 Coated Hollow Pencil-Like ZnO. J. Colloid Interface Sci., 450: 381-387 (2015).
[17] Chang X., Li Z., Zhai X., Sun S., Gu D., Dong L., Yin Y., Zhu Y., Efficient Synthesis of Sunlight-Driven ZnO-based Heterogeneous Photocatalysts. Materials & Design, 98:324-332 (2016).
[18] Zhang L., Wang W., Sun S., Sun Y., Gao E., Zhang Z., Elimination of BPA Endocrine Disruptor by Magnetic BiOBr@ SiO2@ Fe3O4 Photocatalyst.  Appl. Catal. B148:164-169 (2014).
[19] Rehman S., Ullah R., Butt A., Gohar N. D., Strategies of Making TiO2 and ZnO Visible Light Active. J. Hazard. Mater., 170: 560-569 (2009).
[20] Iqbal J., Liu X., Zhu H., Wu Z. B., Zhang Y., Yu D., Yu, R., Raman and Highly Ultraviolet Red-Shifted Near Band-Edge Properties of LaCe-co-Doped ZnO Nanoparticles. Acta materialia, 57: 4790-4796 (2009).
[23] Fouad F. A., Ahmed M. A., Antonious M. S., Abdel-Messi M. F. Synthesis of an Efficient, Stable and Recyclable AgVO3/ZnO Nanocomposites with Mixed Crystalline Phases for Photocatalytic Removal of Rhodamine B Dye. J. Mater. Sci. Mater., 31: 12355–12371 (2020).
[24] Li J., Chen Z., Fang J., Yang Q., Yang X., Zhao W., Zhou D., Qian X., Liu C. Shao J., Facile Synthesis of TiO2 Film on Glass for the Photocatalytic Removal of Rhodamine B and Tetracycline Hydrochloride. Mater. Express, 9: 437-443 (2019).
[25] Huang H., Zhang J., Jiang L., Zang Z., Preparation of Cubic Cu2O Nanoparticles Wrapped by Reduced Graphene Oxide for the Efficient Removal of Rhodamine B. J. Alloys Compd., 718: 112-115 (2017).
[27] Sharma N., Jha R., Baghel S., Sharma D., Study on Photocatalyst Zinc Oxide Annealed at Different Temperatures for Photodegradation of Eosin Y Dye. J. Alloys Compd., 695: 270-279 (2017).
[29] Soto-Vázquez L., Cotto M., Morant C., Duconge J., Márquez, F., Facile Synthesis of ZnO Nanoparticles and its Photocatalytic Activity in the Degradation of 2-Phenylbenzimidazole-5-Sulfonic Acid. J. Photochem. Photobiol. A, 332: 331-336 (2017).
[30] Wang Z., Li Y., Wang J., Zou M., Gao J., Kong Y., Li K., Han G., Spectroscopic Analyses on Sonocatalytic Damage to Bovine Serum Albumin (BSA) Induced by ZnO/Hydroxylapatite (ZnO/HA) Composite under Ultrasonic Irradiation. Spectrochim. Acta A: 94: 228-234 (2012).
[31] Li Y., Wang D., Lim S., Fabrication and Applications of Metal-Ion-Doped Hydroxyapatite Nanoparticles. JOJ Mater. Sci., 1: 1-5 (2017).
[32] Bouropoulos N., Stampolakis A., Mouzakis, D.E., Dynamic Mechanical Properties of Calcium Alginate-Hydroxyapatite Nanocomposite Hydrogels. Sci. Adv. Mater.2: 239-242 (2010).
[33] Shatnawi M., Alsmadi A.M., Bsoul I., Salameh B., Mathai M., Alnawashi G., Alzoubi G.M., Al-Dweri F., Bawa’aneh M.S., Influence of Mn Doping on the Magnetic and Optical Properties of ZnO Nanocrystalline Particles. Results Phys.6: 1064-1071 (2016).
[34] Subash B., Krishnakumar B., Velmurugan R., Swaminathan M., Shanthi M., Synthesis of Ce co-Doped Ag–ZnO Photocatalyst with Excellent Performance for NBB Dye Degradation under Natural Sunlight Illumination. Cat. Sci. Technol., 2: 2319-2326 (2012).
[36] Ahmad M., Ahmed E., Zafar F., Khalid N.R., Niaz N.A., Hafeez A., Ikram M., Khan M.A., Zhanglian H.O.N.G., Enhanced Photocatalytic Activity of Ce-Doped ZnO Nanopowders Synthesized by Combustion Method. J. Rare Earths, 33: 255-262 (2015).
[37] Kumar A., Subash B., Krishnakumar B., Sobral A. J., Sankaran K. R. Synthesis, Characterization and Excellent Catalytic Activity of Modified ZnO Photocatalyst for RR 120 Dye Degradation under UV-A and Solar Light Illumination. J. Water Proc. Eng., 13: 6-15 (2016).
[39] Yang J.H, Zheng J.H, Zhai H.J, Yang L.L, Zhang Y.J, Lang J.H, Gao M., Growth Mechanism and Optical Properties of ZnO Nanotube by the Hydrothermal Method on Si Substrates. J. Alloys Compd., 475:741-744 (2009).
[40] Nikpour      P., Slimi kenari H., Rabiee S. M., Nanocomposite Hydrogels based on Ceramic Nanoparticles with Applications in Tissue Engineering, Iran. Polym. Technol. Rese. Dev., 3:5-17 (2018).
[42] Praveen R., Chandreshia C. B., Ramaraj R., Silicate Sol–Gel Matrix Stabilized ZnO–Ag Nanocomposites Materials and their Environmental Remediation Applications. J. Environ. Chem. Eng., 6: 3702-3708 (2018).