Polycaprolactone/Zn(II) metal-organic framework composite films: preparation, characterization and investigation of oil sorption and antibacterial properties

Document Type : Research Article

Authors

1Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

Polycaprolactone/Zn(II) metal-organic framework composites (PCL/x%ZIF-8, x=10, 30, 50) were prepared by the simple solvent evaporation method. To investigate the structure of the obtained compounds infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and EDS map analysis of zinc element were used. FT-IR spectra and XRD diffraction patterns confirmed the presence of ZIF-8 into the polymer matrix. SEM images showed the distribution of ZIF-8 nanoparticles in composite films. The as-prepared composites were more effective for adsorbing various oils (sunflower oil, olive oil, and motor oil) than the pure polymer film owing to the synergistic effect of polycaprolactone and ZIF-8 nanoparticles. The PCL/50%ZIF-8 composite exhibited the highest efficiency for motor oil adsorption (9.5 g g-1). Then, the antibacterial effect of these nanocomposites against E. coli bacteria was investigated. Furthermore, the results of antibacterial tests showed that PCL/50%ZIF-8 nanocomposite has a significant antibacterial effect against E. coli. As a result, these nanocomposites have the potential to be used in the field of removing some pollutants and thus water purification due to their strong antibacterial effect and hydrophobic properties.

Keywords

Main Subjects


[1] Król M., Rożek P., Sorption of Oil Products on the Synthetic Zeolite Granules, Mineralogia, 51: 1-7 (2020).
[2] Kukkar D., Rani A., Kumar V., Younis S.A., Zhang M., Lee S.-S., Tsang D.C., Kim K.-H., Recent Advances in Carbon Nanotube Sponge–Based Sorption Technologies for Mitigation of Marine Oil Spills, J. Colloid Interface Sci., 570: 411-422 (2020).
[4] Tang Y., Huang H., Guo X., Zhong C., Superhydrophobic Ether-Based Porous Organic Polymer-Coated Polyurethane Sponge for Highly Efficient Oil–Water Separation, Ind. Eng. Chem. Res., 59: 13228-13238 (2020).
[7] Zhang T., Zhang C., Zhao G., Li C., Liu L., Yu J., Jiao F., Electrospun Composite Membrane with Superhydrophobic-Superoleophilic for Efficient Water-in-Oil Emulsion Separation and Oil Adsorption, Colloids Surf. A: Physicochem. Eng. Asp., 602: 125158 (2020).
[8] Connolly B.M., Madden D.G., Wheatley A.E., Fairen-Jimenez D., Shaping the Future of Fuel: Monolithic Metal–Organic Frameworks for High-Density Gas Storage, J. Am. Chem. Soc., 142: 8541-8549 (2020).
[9] Pascanu V., González Miera G., Inge A.K., Martín-Matute B., Metal–Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective, J. Am. Chem. Soc, 141: 7223-7234 (2019).
[10] Gandara-Loe J., Souza B.E., Missyul A., Giraldo G., Tan J.-C., Silvestre-Albero J., MOF-Based Polymeric Nanocomposite Films as Potential Materials for Drug Delivery Devices in Ocular Therapeutics, ACS Appl. Mater. Interfaces, 12: 30189-30197 (2020).
[12] Zhang Y., Yuan S., Feng X., Li H., Zhou J., Wang B., Preparation of Nanofibrous Metal–Organic Framework Filters for Efficient Air Pollution Control, J. Am. Chem. Soc., 138: 5785-5788 (2016).
[13] Shanahan J., Kissel D.S., Sullivan E., PANI@UiO-66 and PANI@UiO-66-NH2 Polymer-MOF Hybrid Composites as Tunable Semiconducting Materials, ACS Omega, 5: 6395-6404 (2020).
[14] Geng P., Cao S., Guo X., Ding J., Zhang S., Zheng M., Pang H., Polypyrrole Coated Hollow Metal–Organic Framework Composites for Lithium–Sulfur Batteries, J. Mater. Chem. A, 7: 19465-19470 (2019).
[15] Jamshidifard S., Koushkbaghi S., Hosseini S., Rezaei S., Karamipour A., Jafari rad A., Irani M., Incorporation of UiO-66-NH2 MOF into the PAN/Chitosan Nanofibers for Adsorption and Membrane Filtration of Pb(II), Cd(II) and Cr(VI) Ions From Aqueous Solutions, J. Hazar. Mater., 368: 10-20 (2019).
[16] Dou Y., Zhang W., Kaiser A., Electrospinning of Metal–Organic Frameworks for Energy and Environmental Applications, Adv. Sci., 7: 1902590 (2020).
[17] Vinogradov V.V., Drozdov A.S., Mingabudinova L.R., Shabanova E.M., Kolchina N.O., Anastasova E.I., Markova A.A., Shtil A.A., Milichko V.A., Starova G.L., Composites Based on Heparin and MIL-101 (Fe): the Drug Releasing Depot for Anticoagulant Therapy and Advanced Medical Nanofabrication, J. Mater. Chem. B, 6: 2450-2459 (2018).
[18] Huang G., Yang Q., Xu Q., Yu S.H., Jiang H.L., Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization, Angew. Chem., 128: 7505-7509 (2016).
[19] Abbasi Z., Shamsaei E., Fang X.-Y., Ladewig B., Wang H., Simple Fabrication of Zeolitic Imidazolate Framework ZIF-8/Polymer Composite Beads by Phase Inversion Method for Efficient oil Sorption, J. Colloid Interface. Sci., 493: 150-161 (2017).
[20] Gu J., Fan H., Li C., Caro J., Meng H., Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@ rGO Composites for Efficient Oil–Water Separation, Angew. Chem., 131: 5351-5355 (2019).
[21] Rodríguez H.S., Hinestroza J.P., Ochoa-Puentes C., Sierra C.A., Soto C.Y., Antibacterial activity Against Escherichia coli of Cu-BTC (MOF-199) Metal-Organic Framework Immobilized Onto Cellulosic Fibers, J. Appl. Polym.Sci., 131: 40815 (2014).
[22] Shengxu Q., Lingjie S., Liwei S., Xu Z., Zhirong X., Jinghua Y., Shifang L., Metal-Organic Framework/Poly (ε-Caprolactone) Hybrid Electrospun Nanofibrous Membranes with Effective Photodynamic Antibacterial Activities, J. Photochem. Photobio. A., 400: 112626 (2020).
[23] Pan Y., Liu Y., Zeng G., Zhao L., Lai Z., Rapid Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals in an Aqueous System, Chem. Commun., 47: 2071-2073 (2011).
[24] Nwadiogbu J.O., Ajiwe V.I.E., Okoye P.A.C., Removal of Crude Oil From Aqueous Medium by Sorption on Hydrophobic Corncobs: Equilibrium and Kinetic Studies, J. Taibah Univ. Sci., 10: 56-63 (2016).
[25] Wyszogrodzka G., Marszalek B., Gil B., Dorozynski P., Metal-Organic Frameworks: Mechanisms of Antibacterial Action and Potential Applications, Drug Discov. Today, 21: 1009-1018 (2016).
[26] Miao W., Wang J., Liu J., Zhang Y., Self-Cleaning and Antibacterial Zeolitic Imidazolate Framework Coatings, Adv. Mater. Interfaces, 5: 1800167 (2018).
[27] Jayaramulu K., Datta K.K.R., Rösler C., Petr M., Otyepka M., Zboril R., Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil–Water Separation. Ang. Chem., 18;55(3): 1178–82 (2016).
[28] Meenarathi B., Chen H.-H., Chen P.-H., Anbarasan R., Synthesis and Characterization of Fluorescent Bio-Degradable Poly (ε-Caprolactone), Int. J. Plast. Technol., 18: 135-145 (2014).
[30] Kaur H., Mohanta G.C., Gupta V., Kukkar D., Tyagi S., Synthesis and Characterization of ZIF-8 Nanoparticles for Controlled Release of 6-Mercaptopurine Drug, J. Drug Del. Sci. Tech., 41: 106-112 (2017).
[31] Pillai P., Dharaskar S., Sasikumar S., Khalid M., Zeolitic Imidazolate Framework-8 Nanoparticle: A Promising Adsorbent for Effective Fluoride Removal from Aqueous Solution, Appl. Water Sci., 9: 150 (2019).
[33] Gautam S., Chou C.-F., Dinda A.K., Potdar P.D., Mishra N.C., Fabrication and Characterization of PCL/Gelatin/Chitosan Ternary Nanofibrous Composite Scaffold for Tissue Engineering Applications, J. Mater. Sci., 49: 1076-1089 (2014).
[34] Yang X., Qiu L., Luo X., ZIF-8 Derived Ag-Doped ZnO Photocatalyst with Enhanced Photocatalytic Activity. RSC Adv., 8(9): 4890–4894 (2018).
[35] Yang X., Chen J., Lai H., Hu J., Fang M., Luo X., MOF-Derived Co/ZnO@Silicalite-1 Photocatalyst with High Photocatalytic Activity. RSC Adv., 7(61): 38519–38525 (2017).
[36] Dorneanu P.P., Cojocaru C., Olaru N., P. Samoila, A. Airinei, Sacarescu L., Electrospun PVDF Fibers and a Novel PVDF/CoFe2O4 Fibrous Composite as Nanostructured Sorbent Materials for Oil Spill Cleanup, Appl. Surf. Sci., 424: 389-396 (2017).
[37] Sann E.E., Pan Y., Gao Z., Zhan S., Xia F., Highly Hydrophobic ZIF-8 Particles and Application for Oil-Water Separation, Sep. Purif. Technol., 206: 186-191 (2018).
[38] Tong G.-X., Du F.-F., Liang Y., Hu Q., Wu R.-N., Guan J.-G., Hu X., Polymorphous ZnO Complex Architectures: Selective Synthesis, Mechanism, Surface Area and Zn-Polar Plane-Codetermining Antibacterial Activity, J. Mater. Chem. B, 1: 454-463 (2013).
[39] Wang J., Wang Y., Zhang Y., Uliana A., Zhu J., Liu J., Van der Bruggen B., Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets Functionalized Thin Film Nanocomposite Membrane for Enhanced Antimicrobial Performance, ACS Appl. Mater. Interfaces, 8: 25508-25519 (2016).