Experimental Investigation of Uranium Biosorption Using Brown Algae Padina sp. in a Continuous System

Document Type : Research Article


Materials and Nuclear Fuels Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, I.R. IRAN


Considering the environmental hazards of uranium, implementing a suitable and effective method to remove this chemical poisonous and radioactive heavy metal from the aqueous solutions is very important. In this study, the biosorption of uranium using the marine brown algae, Padina sp., was investigated in a continuous system. The column was a glass tube with an inside diameter of 1 cm and 20 cm in length. The effect of various operating parameters such as initial solution concentration, bed height and feed flow rate was investigated. According to the results, the breakthrough and the saturation points occurred at 1.5 and 20 hours, respectively and the amount of the absorption capacity was 372 mg/g at the operating conditions, i.e., flow rate of 5 mL/min, bed height of 8 cm and solution initial concentration of 150 mg/L. The experimental results have been fitted with the Thomas and BDST models and the models results showed good agreement with the empirical data. The parameters of Thomas model, kTH and qm were 0.00208 L/hr.mg and 449 mg/g, respectively and 0.00208 L/hr.mg and 72.42 mg/cm3 for Ka and N0, the parameters of BDST model, respectively. Sorption-desorption studies were carried out for three sequential cycles. The results indicated that Padina sp. has the ability to uptake uranium with high sorption capacity in a continuous system and has the possibility for regeneration and reuse


Main Subjects

[1] Aksu Z., Equilibrium and Kinetic Modelling of Cadmium (Ii) Biosorption by C. Vulgaris in a Batch System: Effect of Temperature, Separation and Purification Technology, 21(3): 285-294 (2001).
[2] Gök C., Aytas S., Sezer H., Modeling Uranium Biosorption by Cystoseira Sp. And Application Studies, Separation Science and Technology, 52(5): 792-803 (2017).
[3] Kalin M., Wheeler W., Meinrath G., The Removal of Uranium from Mining Waste Water Using Algal/Microbial Biomass, Journal of environmental radioactivity, 78(2): 151-177 (2005).
[4] Khani M., Keshtkar A., Ghannadi M., Pahlavanzadeh H., Equilibrium, Kinetic and Thermodynamic Study of the Biosorption of Uranium onto Cystoseria Indica Algae, Journal of Hazardous Materials, 150(3): 612-618 (2008).
[5] Yi Z.-j., Yao J., Zhu M.-j., Chen H.-l., Wang F., Yuan Z.-m., Liu X., Batch Study of Uranium Biosorption by Elodea Canadensis Biomass, Journal of Radioanalytical and Nuclear Chemistry, 310(2): 505-513 (2016).
[6] Hassan Khani M., Reza Keshtkar A., Meysami B., Firouz Zarea M., Jalali R., Biosorption of Uranium from Aqueous Solutions by Nonliving Biomass of Marinealgae Cystoseira Indica, Electronic Journal of Biotechnology, 9(2): (2006).
[7] Farhan S.N., Khadom A.A., Biosorption of Heavy Metals from Aqueous Solutions by Saccharomyces Cerevisiae, International journal of industrial chemistry, 6(2): 119-130 (2015).
[8] Gupta V., Carrott P., Ribeiro Carrott M., Suhas. Low-Cost Adsorbents: Growing Approach to Wastewater Treatment—a Review, Critical Reviews in Environmental Science and Technology, 39(10): 783-842 (2009).
[9] Ali I., Gupta V., Advances in Water Treatment by Adsorption Technology, Nature protocols, 1(6): 2661-2667 (2006).
[10] Gupta V., Shrivastava A., Jain N., Biosorption of Chromium (VI) from Aqueous Solutions by Green Algae Spirogyra Species, Water research, 35(17): 4079-4085 (2001).
[11] Gupta V.K., Rastogi A., Nayak A., Adsorption Studies on the Removal of Hexavalent Chromium from Aqueous Solution Using a Low Cost Fertilizer Industry Waste Material, Journal of Colloid and Interface Science, 342(1): 135-141 (2010).
[13] Bano A., Hussain J., Akbar A., Mehmood K., Anwar M., Hasni M.S., Ullah S., Sajid S., Ali I., Biosorption of Heavy Metals by Obligate Halophilic Fungi, Chemosphere, 199: 218-222 (2018).
[14] Fadel M., Hassanein N.M., Elshafei M.M., Mostafa A.H., Ahmed M.A., Khater H.M., Biosorption of Manganese from Groundwater by Biomass of Saccharomyces Cerevisiae, Hbrc Journal, 13(1): 106-113 (2017).
[15] Pyrzynska K., Removal of Cadmium from Wastewaters with Low-Cost Adsorbents, Journal of Environmental Chemical Engineering, 7(1): 102795 (2019).
[16] Romero‐Cano L.A., González‐Gutiérrez L.V., Baldenegro‐Pérez L.A., Carrasco‐Marín F., Grapefruit Peels as Biosorbent: Characterization and Use in Batch and Fixed Bed Column for Cu (II) Uptake from Wastewater, Journal of Chemical Technology & Biotechnology, 92(7): 1650-1658 (2017).
[17] Vendruscolo F., da Rocha Ferreira G.L., Antoniosi Filho N.R., Biosorption of Hexavalent Chromium by Microorganisms, International Biodeterioration & Biodegradation, 119: 87-95 (2017).
[18]  محمدی‌ها م.،امانی ح.، کریمی نژاد ح.، بررسی جذب بیولوژیکی فلزهای سنگین روی و کبالت توسط قارچ غیر زندهPtcc 5270 Phanerochaet Crysosperium ، نشریه شیمی و مهندسی شیمی ایران، (1)38: 301 تا 308 (1398).
[19] حسنی سردارآبادی م.، میرزایی م.، مطالعه تجربی و نظری جذب یون مس (II) در یک بستر ثابت پر شده با دانه‌های هیدروژل، با خوراک‌دهی شعاعی، نشریه شیمی و مهندسی شیمی ایران، (1)40: 147 تا 156 (1400).
[20]  شریفی فرد ح.، لشنی زادگان ا.، هاشمی ز.، مدل‌سازی انتقال جرم فرآیند جذب سطحی کادمیم با کربن فعال سنتز شده از تفاله انگور، نشریه شیمی و مهندسی شیمی ایران، (3)39: 171 تا 183 (1399).
[21] Volesky B., Sorption and Biosorption, Montreal-St. Lambert, Quebec, Canada, BV Sorbex Inc, 11: 258-263 (2003).
[22] Naddafi K., Nabizadeh R., Saeedi R., Mahvi A.H., Vaezi F., Yaghmaeian K., Ghasri A., Nazmara S., Biosorption of Lead (Ii) and Cadmium (Ii) by Protonated Sargassum Glaucescens Biomass in a Continuous Packed Bed Column, Journal of Hazardous Materials, 147(3): 785-791 (2007).
[23] Vijayaraghavan K., Jegan J., Palanivelu K., Velan M., Biosorption of Copper, Cobalt and Nickel by Marine Green Alga Ulva Reticulata in a Packed Column, Chemosphere, 60(3): 419-426 (2005).
[24] Ghasemi M., Keshtkar A.R., Dabbagh R., Safdari S.J., Biosorption of Uranium (VI) from Aqueous Solutions by Ca-Pretreated Cystoseira Indica Alga: Breakthrough Curves Studies and Modeling, Journal of Hazardous Materials, 189(1-2): 141-149 (2011).
[26] Malkoc E., Nuhoglu Y., Removal of Ni (II) Ions from Aqueous Solutions Using Waste of Tea Factory: Adsorption on a Fixed-Bed Column, Journal of Hazardous Materials, 135(1-3): 328-336 (2006).
[27] Seader J.D., Henley E.J., Roper D.K., "Separation Process Principles", John Wiley & Sons,‏ (1998).
[28] Park D., Yun Y.-S., Park J.M., The Past, Present, and Future Trends of Biosorption, Biotechnology and Bioprocess Engineering, 15(1): 86-102 (2010).
[29] Baral S., Das N., Ramulu T., Sahoo S., Das S., Chaudhury G.R., Removal of Cr (VI) by Thermally Activated Weed Salvinia Cucullata in a Fixed-Bed Column, Journal of Hazardous Materials, 161(2-3): 1427-1435 (2009).
[31] Ghasemi M., Keshtkar A., Dabbagh R., JABER S.S., Biosorption of Uranium in a Continuous Flow Packed Bed Column Using Cystoseira Indica Biomass, Journal of Environmental Health Science & Engineering, 8(1): 65-74 (2011).
[32] Khani M.H., Uranium Biosorption by Padina Sp. Algae Biomass: Kinetics and Thermodynamics, Environmental Science and Pollution Research, 18(9): 1593 (2011).
[33] Yang J., Volesky B., Biosorption of Uranium on Sargassum Biomass, Water research, 33(15): 3357-3363 (1999).
[34] Khani M.H., Statistical Analysis and Isotherm Study of Uranium Biosorption by Padina Sp. Algae Biomass, Environmental Science and Pollution Research, 18(5): 790-799 (2011).