Experimental Investigation of Adsorption of Sulfur Compounds from Model Fuel with Modified NaY Zeolite Adsorbent

Document Type : Research Article

Authors

Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, I.R. IRAN

Abstract

Adsorption capacity and selectivity are two major challenges that adsorption desulfurization faces. One way to overcome these challenges is to use mesoporous zeolites. In this study, the effects of mesoporosity on the adsorption desulfurization performance with NaY zeolite adsorbent were investigated. In order to optimize the parameters, the desilication operation was performed with a mixture of sodium hydroxide (NaOH) and tetrapropylammonium hydroxide (TPAOH) solution at room temperature with ratios of R=  = 0, 0.25, 0.5, 0.75. The adsorbents were characterized by XRD, BET, FE-SEM and FT-IR. The results showed that ATY (0.5)-0.25R adsorbent has the highest mesopore surface with the value of 54.03 m2/g. Meanwhile, the adsorption desulfurization performance in a batch reactor was tested using different model fuels containing the sulfur compounds thiophene and dibenzothiophene. The results showed that different ratios of NaOH/TPAOH solution play an important role in the adsorption of sulfur compounds. In addition, Cu metal ion was impregnated on the parent zeolite and ATY (0.5M)-0.25R adsorbents in order to increase the adsorption capacity. It has been shown that the adsorption capacity of the adsorbents increases with ion exchanging of Cu metal ion, so that the Cu-0.25R adsorbent has the highest adsorption capacity of the sulfur compounds thiophene and dibenzothiophene with the values ​​of 18.28 and 21.83 mg S/g, respectively. In this regard, the effect of temperature on the Cu-0.25R adsorbent on the adsorption of thiophene has been investigated. It has been shown that, the adsorption of thiophene has increased with increasing temperature and has reached its maximum at 50 ° C. Thermodynamic studies showed that the adsorption process is endothermic. The kinetic models of adsorption of sulfur compounds followed the pseudo – second – order equation. The adsorption isotherm was well matched to the Langmuir isotherm equation and its maximum adsorption capacity for thiophene and dibenzothiophene sulfur compounds was 18.38 and 23.43 mg/g, respectively.

Keywords

Main Subjects


[1] Chandak N., George A., Hamadi A., Dakhan M., Chaudhry A., Singaravel G., Morin S., Impact of Processing Different Blends of Heavy Gas Oil and Light Cycle Oil in a Mild Hydrocracker Unit, Catalysis Today329: 116-124 (2019).
[2] Sengupta A., Kamble P., Basu J., Sengupta S., Kinetic Study and Optimization of Oxidative Desulfurization of Benzothiophene using Mesoporous Titanium Silicate-1 Catalyst, Industrial & engineering chemistry research51(1): 147-157 (2012).
[5] Gao Y., Cheng L., Gao R., Hu G., Zhau J., Deep Desulfurization of Fuels using Supported Ionic Liquid-Polyoxometalate Hybrid as Catalyst: A Comparison of Different Types of Ionic Liquids, Journal of Hazardous Materials401: 123267 (2021).
[6] Ahmadpour J., Ahmadi M., Javdani A., Hydrodesulfurization Unit for Natural Gas Condensate, Journal of Thermal Analysis and Calorimetry135(3): 1943-1949 (2019).
[7] Rezvani M.A., Asli M.A.N., Oveisi M., Babaei R., Qasemi K., Khandan S., An Organic–Inorganic Hybrid based on an Anderson-Type Polyoxometalate Immobilized on PVA as a Reusable and Efficient Nanocatalyst for Oxidative Desulphurization of GasolineRSC advances6(58): 53069-53079 (2016).
[8] موسوی س.ف.، بازیاری ا.، علوی املشی س.م.، بررسی کاتالیست­ های دارای اکسید وانادیم در فرایند گوگردزدایی اکسایشی برای حذف دی­بنزوتیوفن، نشریه شیمی مهندسی شیمی ایران، (4)40: 101 تا 109 (1400).
[9] حقیقی م.، گونه فراهانی س.، سنتز و بهبود مشخصه‌های زئولیت ZSM – 11 با فلزهای واسطه برای کاربرد کاتالیستی آن در گوگردزدایی به روش اکسایش، نشریه شیمی مهندسی شیمی ایران، (3)40: 89 تا 102 (1400).
[12] Dadashi M., Mazloom G., Akbari A., Banisharif F., The Performance of Micro-Meso-Pore HY Zeolite for Supporting Mo Toward Oxidation of Dibenzothiophene, Environmental Science and Pollution Research27: 30600-30614 (2020).
[13] Wang Q., Zhang T., Zhang S., Fan Y., Chen B., Extractive Desulfurization of Fuels using Trialkylamine-Based Protic Ionic Liquids, Separation and Purification Technology231: 115923 (2020).
[14] Boniek D., Figueiredo D., dos Santus A.F.B., de Resende M.A., Biodesulfurization: A Mini Review About the Immediate Search for the Future Technology, Clean Technologies and Environmental Policy, 17(1): 29-37 (2015).
[15] WANG S.H., Yun Z., Qin Y.C., Zhang X.T., Song L.J., Fabrication of Effective Desulfurization Species Active Sites in the CeY Zeolites and the Adsorption Desulfurization Mechanisms, Journal of Fuel Chemistry and Technology48(1): 52-62 (2020).
[16] Zhu L., Lv X., Tong S., Zhang T., Song Y., Wang Y., Hao Z., Huang C., Xia D., Modification of Zeolite by Metal and Adsorption Desulfurization of Organic Sulfide in Natural Gas, Journal of Natural Gas Science and Engineering69: 102941 (2019).
[17] Hessou E.P., Jabraoui H., Khalil I., Dziurla M.A., Badawi M., Ab Initio Screening of Zeolite Y Formulations for Efficient Adsorption of Thiophene in Presence of BenzeneApplied Surface Science541: 148515 (2021).
[18] Song H., Wan X., Dai M., Zhang J., Li F., Song H., Deep Desulfurization of Model Gasoline by Selective Adsorption over Cu–Ce Bimetal Ion-Exchanged Y Zeolite, Fuel processing technology116: 52-62 (2013).
[19] Lu Y., Wang R., Nan Y., Liu F., Yang X., Removal of Sulphur from Model Gasoline by CuAgY Zeolite: Equilibrium, Thermodynamics and Kinetics, RSC advances7(81): 51528-51537 (2017).
[20] عباسی ا.ر.، قاسم پور ح.، ابراهیم زاده م.ا.، بابایی ف.، خانپور متی کلایی م.، مرسلی ع.، اهمیت و کاربرد نانو چارچوب­ های فلزـ آلی در جذب، ذخیره و آزاد­سازی متان، نشریه شیمی و مهندسی شیمی ایران، (3)37: 1 تا 11 (1397)
[21] Neves C.V., Modenes A.N., Scheufele F.B., Rocha R.P., Pereira M.F.R., Figueiredo J.L., Borba C.E., Dibenzothiophene Adsorption onto Carbon-based Adsorbent Produced from the Coconut Shell: Effect of the Functional Groups Density and Textural Properties on Kinetics and Equilibrium, Fuel292: 120354 (2021).
[22] Khosravi-Nikou M.R., Safari M.H., Rad A.A., Hassani P., Mohammadian M., Ahmadi M., Ghafari N., Naseri M., Desulfurization of Liquid Fuels using Aluminum Modified Mesoporous Adsorbent: Towards Experimental and Kinetic Investigations, Scientific Reports11(1): 1-11 (2021).
[23] Rezvani M.A., Shaterian M., Aghbolagh Z.S., Akbarzadeh F., Synthesis and Characterization of New Inorganic‐Organic Hybrid Nanocomposite PMo11Cu@ MgCu2O4@ CS as an Efficient Heterogeneous Nanocatalyst for ODS of Real FuelChemistrySelect4(20): 6370-6376 (2019).
[24] Rezvani M.A., Aghbolagh Z.S., Monfared H.H., Green and Efficient Organic–Inorganic Hybrid Nanocatalyst for Oxidative Desulfurization of GasolineApplied Organometallic Chemistry32(12): 4592 (2018).
[25] Wei F., Guo X., Liao J., Bao W., Chang L., Ultra-Deep Removal of Thiophene in Coke oven Gas over Y Zeolite: Effect of Acid Modification on Adsorption Desulfurization, Fuel Processing Technology213: 106632 (2021).
[27] Duan L., Gao X., Meng X., Zhang H., Wang Q., Adsorption, Co-Adsorption, and Reactions of Sulfur Compounds, Aromatics, Olefins over Ce-Exchanged Y Zeolite, The Journal of Physical Chemistry C116(49): 25748-25756 (2012).
[28] Rezvani M.A., Asli M.A., Khandan S., Mousavi H., Aghbolagh Z.S., Synthesis and Characterization of New Nanocomposite CTAB-PTA@ CS as an Efficient Heterogeneous Catalyst for Oxidative Desulphurization of GasolineChemical Engineering Journal312: 243-251 (2017).
[30] Zhang Z.Y., Shi T.B., Jia C.Z., Ji W.J., Chen Y., He M.Y., Adsorptive Removal of Aromatic Organosulfur Compounds over the Modified Na-Y Zeolites, Applied Catalysis B: Environmental82(1-2): 1-10 (2008).
[31] Weitkamp J., Zeolites and Catalysis, Solid state ionics131(1-2): 175-188 (2000).
[32] Gackowski M., Jerzy D., Acid Properties of Hierarchical Zeolites Y, Molecules25(5): 1044 (2020).
[33] Tian F., Shen Q., Fu Z., Wu Y., Jia C., Enhanced Adsorption Desulfurization Performance over Hierarchically Structured Zeolite Y, Fuel processing technology128: 176-182 (2014).
[34] Serrano D.P., Pizarro P., Synthesis Strategies in the Search for Hierarchical Zeolites, Chemical Society Reviews42(9): 4004-4035 (2013).
[35] Möller K., Bein T., Mesoporosity–A New Dimension for Zeolites, Chemical Society Reviews42(9): 3689-3707 (2013).
[36] Verboekend D., Vilé G., Pérez‐Ramírez J., Hierarchical Y and USY Zeolites Designed by Post‐Synthetic Strategies, Advanced Functional Materials22(5): 916-928 (2012).
[37] Hernández-Maldonado A.J., Yang R.T., Desulfurization of Liquid Fuels by Adsorption via π Complexation with Cu (I)− Y and Ag− Y Zeolites, Industrial & Engineering Chemistry Research42(1): 123-129 (2003).
[38] Hernández-Maldonado A.J., Yang F.H., Qi G., Yang R.T., Desulfurization of Transportation Fuels by π-Complexation Sorbents: Cu (I)-, Ni (II)-, and Zn (II)-Zeolites, Applied Catalysis B: Environmental56(1-2): 111-126 (2005).
[39] Wang L., Sun B., Yang F.H., Yang R.T., Effects of Aromatics on Desulfurization of Liquid Fuel by π-Complexation and Carbon Adsorbents, Chemical engineering science73: 208-217 (2012).
[40] Li X., Zhang X., Lei L., Preparation of CuNaY Zeolites with Microwave Irradiation and their Application for Removing Thiophene from Model Fuel, Separation and purification technology64(3): 326-331 (2009).
[41] Lee K.X., Valla J.A., Investigation of Metal-Exchanged Mesoporous Y Zeolites for the Adsorptive Desulfurization of Liquid Fuels, Applied Catalysis B: Environmental201: 359-369 (2017).
[42] Lee K.X., Tsilomelekis G., Valla J.A., Removal of Benzothiophene and Dibenzothiophene from Hydrocarbon Fuels using CuCe Mesoporous Y Zeolites in the Presence of Aromatics, Applied Catalysis B: Environmental, 234: 130-142 (2018).
[43] Sikarwar P., Gosu V., Subbaramaiah V., An Overview of Conventional and Alternative Technologies for the Production of Ultra-Low-Sulfur FuelsReviews in Chemical Engineering35(6): 669-705 (2019).
[45] Yi D., Huang H., Meng X., Shi L., Adsorption–Desorption Behavior and Mechanism of dimethyl Disulfide in Liquid Hydrocarbon Streams on Modified Y Zeolites, Applied Catalysis B: Environmental148: 377-386 (2014).
[46] Hernández-Maldonado A.J., Yang R.T., Desulfurization of Commercial Liquid Fuels by Selective Adsorption via π-Complexation with Cu (I)− Y Zeolite, Industrial & engineering chemistry research, 42(13): 3103-3110 (2003).
[47] Song H., Chang Y., Wan X., Dai M., Song H., Jin Z., Equilibrium, Kinetic, and Thermodynamic Studies on Adsorptive Desulfurization onto CuICeIVY Zeolite, Industrial & Engineering Chemistry Research53(14): 5701-5708 (2014).
[48] Fei L., Rui J., Wang R., Lu Y., Yang X., Equilibrium and Kinetic Studies on the Adsorption of Thiophene and Benzothiophene onto NiCeY Zeolites, RSC advances7(37): 23011-23020 (2017).
[49] Shen B., Qin Z., Gao X., Lin F., Zhou S., Shen W., Wang B., Zhao H., Liu H., Desilication by Alkaline Treatment and Increasing the Silica to Alumina Ratio of Zeolite Y, Chinese Journal of Catalysis, 33(1): 152-163 (2012).
[50] Qin Z., Shen B., Yu Z., Deng F., Zhao L., Zhou S., Yuan D., Gao X., Wang B., Zhao H., Liu H., A Defect-based Strategy for the Preparation of Mesoporous Zeolite Y for High-Performance Catalytic Cracking, Journal of Catalysis298: 102-111 (2013).
[51] Nuntang S., Prasassarakich P., Ngamcharussrivichai C., Comparative Study on Adsorptive Removal of Thiophenic Sulfurs over Y and USY Zeolites, Industrial & engineering chemistry research47(19): 7405-7413 (2008).
[52] García J.R., Falco M., Sedran U., Impact of the Desilication Treatment of Y Zeolite on the Catalytic Cracking of Bulky Hydrocarbon Molecules, Topics in Catalysis59(2-4): 268-277 (2016).
[53] Groen J.C., Peffer L.A., Moulijn J.A., Pérez‐Ramírez J., Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore‐Directing Agent, Chemistry–A European Journal11(17): 4983-4994 (2005).
[55] Verboekend D., Keller T.C., Mitchell S., Pérez‐Ramírez J., Hierarchical FAU‐and LTA‐Type Zeolites by Post‐Synthetic Design: A New Generation of Highly Efficient Base Catalysts, Advanced Functional Materials23(15): 1923-1934 (2013).
[56] Pérez‐Ramírez J., Verboekend D., Bonilla A., Abelló S., Zeolite Catalysts with Tunable Hierarchy Factor by Pore‐Growth Moderators, Advanced Functional Materials19(24): 3972-3979 (2009).
[57] Jentys A., Lercher J.A., Techniques of Zeolite Characterization, Studies in Surface Science and Catalysis, 137: 345-386 (2001).
[58] Velu S., Ma X., Song C., Selective Adsorption for Removing Sulfur from Jet Fuel over Zeolite-based Adsorbents, Industrial & engineering chemistry research42(21): 5293-5304 (2003).
[60] Zheng H., Liu D., Zheng Y., Liang S., Liu Z., Sorption Isotherm and Kinetic Modeling of Aniline on Cr-Bentonite, Journal of hazardous materials, 167(1-3): 141-147 (2009).
[61] Tahir S.S., Rauf N., Removal of a Cationic Dye from Aqueous Solutions by Adsorption onto Bentonite ClayChemosphere63(11): 1842-1848 (2006).
[62] Foo K.Y., Hameed B.H., Insights into the Modeling of Adsorption Isotherm SystemsChemical engineering journal156(1): 2-10 (2010).