Optimization of lipase production by Aspergillus sp. isolated from olive mill wastewater under solid-state fermentation

Document Type : Research Article

Authors

1 Department of Chemical Engineering, Faculty of Eng., University of Guilan, Rasht, IRAN

2 Department of Chemistry, Payam Noor University, Qazvin Center, Qazvin, Iran

3 Department of Chemistry, Faculty of Basic Sciences, Imam Khomeini International University Qazvin, Qazvin, Iran

Abstract

Lipases are a group of hydrolases capable of catalyzing the hydrolysis of triacylglycerols to free fatty acids and glycerol. They are very important industrial enzymes because of the potential to be used in many industrial applications. In this research, potent lipase producer fungi were isolated and screened from olive mill wastewater and its disposal pond. In the qualitative test, 7 strains were identified as lipase producer fungi. One of the 7 isolated fungi, was identified based on macroscopic and microscopic examination as Aspergillus sp. that detected good lipase activity. The L25 Taguchi orthogonal array design of experiments with four factors in five levels was used to reach optimal fermentation conditions and medium composition for lipase production using Minitab 19 software. The optimum conditions derived were: WS/OF content ratio (0.5), fermentation time (7 days) and moisture content 1:2 (66%), glucose concentration as a co-substrate (0 g/L). Using optimal fermentation condition, maximum lipase activity (2754.73 U/g of the dry substrate) was obtained. The results demonstrated that the fungus isolated is a promising alternative for lipase production. This study aimed to better understand the microorganisms in OMW and take them to the potential candidates for the conversion of agricultural by-products into valuable secondary metabolites like lipase.

Keywords

Main Subjects


[1]. Sharma R., Chisti Y., Banerjee U. C., Production, Purification, Characterization, and Applications of Lipases, Biotechnol. Adv., 19: 627–662 (2001).
[2]. Sarmah N., Revathi D., Sheelu G., Rani K. Y., Sridhar S., Mehtab V., Sumana C., Recent Advances on Sources and Industrial Applications of Lipases, Biotechnol. Prog., 34: 5-28 (2018).
[3]. Kumar D. S., Ray S., Fungal Lipase Production by Solid State Fermentation-An Overview, J. Anal. Bioanal. Tech., 6(1): 230-240 (2014).
[5]. Xin F., Geng A., Utilization of Horticultural Waste for Laccase Production by Trametes versicolor under Solid-State Fermentation, Appl. Biochem. Biotechnol., 163: 235–246 (2011).
[6]. Khayati G., Gilani H. G., Kazemi M., The Effect of Olive Cake Types on Lipase Production by Isolated Rhizopus sp. and Process Statistical Optimization, J. BioSci. Biotech., 2: 45-55 (2013).
[9]. Toca-Herrera J. L., Osma J. F., Rodríguez Couto S., Potential of Solid-State Fermentation for Laccase Production, J. Appl. Microbiol., 1: 391-400 (2007).
[10]. A´ lvarez-Cervantes J., Sa´nchez C., D´ıaz R., D´ıaz-God´ınez G., Characterization of Production of Laccases, Cellulases and Xylanases of Pleurotus ostreaus Grown on Solid-State Fermentation Using an Inert Support, Rev. Mex. Ing. Quim., 15(2): 323-331 (2016).
[13]. Aydınog˘lu T., Sargın S., Production of Laccase from Trametes versicolor by Solid-State Fermentation Using Olive Leaves as a Phenolic Substrate, Bioprocess Biosyst. Eng., 36: 215-222 (2013).
[14]. Czitrom V., One-Factor-at-a-Time versus Designed Experiments, Am. Stat., 53(2): 126-131 (1999).
[17]. Bouknana D., Hammouti B., Salghi R., Jodeh S., Zarrouk A., Warad I., Aouniti A., Sbaa M., Physicochemical Characterization of Olive Oil Mill Wastewaters in the Eastern Region of Morocco, J. Mater. Environ. Sci., 5(4): 1039-1058 (2014).
 [18]. Rihani A., Tichati L., Soumati B., Isolation and Identification of Lipase-Producing Fungi from Local Olive Oil Manufacture in East of Algeria, Chem. Chem. Eng. Biotechnol. Food Ind., 19(1): 13–22 (2018).
[19]. Brozzoli V., Crognale S., Sampedro I., Federici F., D’Annibale A., Petruccioli M., Assessment of Olive-Mill Wastewater as a Growth Medium for Lipase Production by Candida cylindracea in Benchtop Reactor, Bioresour. Technol., 100: 3395–3402 (2009).
[20]. Ertu˘grul S., D¨onmeza G., Takac S., Isolation of Lipase Producing Bacillus sp. from Olive Mill Wastewater and Improving its Enzyme Activity, J. Hazard. Mater., 149: 720–724 (2007).
[21]. Salgado V., Fonseca C., da Silva T. L., Carlos J., Roseiro A., Isolation and Identification of Magnusiomyces capitatus as a Lipase‑roducing Yeast from Olive Mill Wastewater, Waste Biomass Valorization., 11: 3207–3221 (2020).
[22]. Ahmed P. M., Fernández P. M., de Figueroa L. I. C., Pajot H. F., Exploitation Alternatives of Olive Mill Wastewater: Production of Value-added Compounds Useful for Industry and Agriculture, Biofuel Res. J., 22: 980-994 (2019).
[23]. D’Annibale A., Sermanni G. G., Federici F., Petruccioli M., Olive-mill Wastewaters: a Promising Substrate for Microbial Lipase Production, Bioresour. Technol., 97: 1828–1833 (2006).
[24]. Choudhary R., Isolation and Screening of Lipase Producing Bacteria from Oil Mill Effluent, Indian J. Sci. Res., 13(2): 192-194 (2017).
[25]. Gonçalves C., Alves M., Belo I. Integrated Process for the Production of Lipase and Methane from Olive Mill Wastewaters, Conference paper http://hdl.handle.net/1822/16864
[27]. Adami Ghamsari F., Hosseini F., khanafari A., Isolation of Lipolytic Bacteria from Environmental Resources for Biodegradation Polysorbates in Industrial Wastewater, Bimonthly Journal of Sabzevar University of Medical Sciences. 22(4): 685-693 (2015).
[28]. Falony G., Armas J. C., Mendoza J. C. D., Martínez Hernández J. L., Production of Extracellular Lipase from Aspergillus niger by Solid-State Fermentation, Food Technol. Biotechnol., 44(2): 235–240 (2006).
[29]. Oliveira F., Salgado J. M., Abrunhosa L., Pe´rez-Rodrı´guez N., Domı´nguez J. M., Venaˆncio A., Belo I., Optimization of Lipase Production by Solid-State Fermentation of Olive Pomace: from Flask to Laboratory-Scale Packed-Bed Bioreactor, Bioprocess Biosyst. Eng., 40: 1123–1132 (2017).
[30]. Balaji V., Ebenezer P., Optimization of Extracellular Lipase Production in Colletotrichum gloeosporioides by Solid State Fermentation, Indian J. Sci. Technol., 1(7): 1-8 (2008).
[31]. Toscano L., Montero G., Stoytcheva M., Gochev V., Cervantes L., Campbell H., Zlatev R., Valdez B., Pérez C., Gil-Samaniego M., Lipase Production through Solid State Fermentation Using Agro-industrial Residues as Substrates and Newly Isolated Fungal Strains, Biotechnol. Biotechnol Equip., 27(5): 4074-4077 (2013).
[32]. Costa TM, Hermann KL, Garcia-Roman M, Valle R. de C. S. C., Tavares L. B. B., Lipase Production by Aspergillus niger Grown in Different Agro-industrial Wastes by Solid-State Fermentation, Braz. J. Chem. Eng., 34(2): 419–427 (2017).
 [33]. Ferreira A. N., Ribeiro D. S., Santana R. A., Production of Lipase from Penicillium Sp. Using Waste Oils and Nopalea Cochenillifera, Chem. Eng. Commun., 204: 1167-1173 (2017).
[34]. Boratyński F., Szczepańska E., Grudniewska A., Gniłka R., Olejniczak T., Improving of Hydrolases Biosynthesis by Solid-State Fermentation of Penicillium camemberti on Rapeseed Cake, Sci. Rep., 8: 10157 (2018).
[35]. Alhamdani M. A., Alkabbi H. J. J., Isolation and Identification of Lipase Producing Bacteria from Oil-contaminant Soil, Journal of Biology, Agriculture and Healthcare., 6(20): (2016).
[36]. Narasimhan V., Valentin Bhimba B., Screening of Extracellular Lipase Releasing Microorganisms Isolated from Sunflower Vegetable Oil Contaminated Soil for Bio-diesel Production, Asian J. Pharm. Clin. Res., 8(2): 427-430 (2015).
[38]. Golani M., Hajela K., Pandey G. P., Screening, Identification, Characterization and Production of Bacterial Lipase from Oil Spilled Soil, Int. J. Curr. Microbiol. App. Sci., 5(3): 745-763 (2016).
[39]. Alsohaili S. A., Bani-Hasan B M., Morphological and Molecular Identification of Fungi Isolated from Different Environmental Sources in the Northern Eastern Desert of Jordan, Jordan Journal of Biological Sciences (JJBS)., 11(3): 329 – 337 (2018).
[40]. Bandh S. A., Kamili A. N., Ganai B. A., Identification of Some Aspergillus Species Isolated from Dal Lake, Kashmir by Traditional Approach of Morphological Observation and Culture, Afr. J. Microbiol. Res., 6(29): 5824-5827 (2012).
 [41]. Diba K., Kordbacheh P., Mirhendi S. H., Rezaie S., Mahmoudi M., Identification of Aspergillus Species Using Morphological Characteristics, Pak. J. Med. Sci., 23(6): 867-872 (2007).
[42]. Nyongesa B. W., Okoth S., Ayugi V., Identification Key for Aspergillus Species Isolated from Maize and Soil of Nandi County, Kenya, Adv. Microbiol., 5: 205-229 (2015).
[43]. Contesini F. J., Calzado F., Madeira J. V., Rubio M. V., Zubieta M. P., Melo R. R., Gonçalves T. A., Aspergillus Lipases: Biotechnological and Industrial Application, Reference Series in Phytochemistry, Springer International Publishing Switzerland (2017).
[44]. Suyanto E., Soetarto E. S., Cahyanto M. N., Production and Optimization of Lipase by Aspergillus Niger using Coconut Pulp Waste in Solid State Fermentation, J. Phys.: Conf. Ser. 1374 012005 (2019).
 [45]. Giovannozzi-Sermanni G., D’Annibale A., Crestini C., Solid State Fermentation of Wheat Straw for Paper Production, In: Roussos S, Lonsane BK, Raimbault M, Viniegra-Gonzalez G (eds) Advances in Solid State Fermentation. Dordrecht: Springer, 529-542 (1997).
[46]. Pourkhanali K., Khayati G., Mizani F., Raouf F., Isolation, Identification and Optimization of Enhanced Production of Laccase from Galactomyces geotrichum under Solid-State Fermentation, Prep. Biochem. Biotechnol., 1-10 (2020).
 [48]. Masutti D. C., Borgognone A., Setti L., Production of Enzymes from Rice Husks and Wheat Straw in Solid State Fermentation, Chem. Eng. Trans., 27: 133-138 (2012).
[49]. Shahryari, Z., Fazaelipoor M. H., Setoodeh P., Nair R. B., Taherzadeh M. J., Ghasemi Y., Utilization of Wheat Straw for Fungal Phytase Production, Int. j. recycle. Org. waste agric., 7: 345–355 (2018).
[50]. Khan T. S., Mubeen U., Wheat Straw: a Pragmatic Overview, Current Res. J. Biol. Sci., 4: 673–675 (2012).
[51]. Slavin J., Why Whole Grains Are Protective: Biological Mechanisms, Proc. Nutr. Soc., 62(1): 129-134 (2003).
 [52]. Yasin M., Bhutto A. W., Bazmi A. A., Karim S., Efficient Utilization of Rice-Wheat Straw to Produce Value –Added Composite Products, J. Environ. Chem. Eng., 1(2): 137-143 (2010).
[54]. Manan M. A., Design Aspects of Solid State Fermentation as Applied to Microbial Bioprocessing, J. Appl. Biotechnol. Bioeng., 4(1): 511‒532 (2017).
[55]. Bhargav S., Panda B. P., Ali M., Javed S., Solid-State Fermentation: An Overview, Chem. Biochem. Eng. Q., 22(1): 49–70 (2008).
[56]. Gowthaman M. K., Krishna Ch., Moo –Young M., Fungal Solid State Fermentation- an Overview, Appl. Mycol. Biotechnol., 1: 305-352 (2001).
[57]. Krishna C., Solid-State Fermentation Systems: An Overview, Crit. Rev. Biotechnol., 25: 1–30 (2005).
[58]. Niladevi K. N., Prema P., Immobilization of Laccase from streptomyces psammoticus and Its Application in Phenol Removal Using Packed Bed Reactor, World J. Microbiol. Biotechnol., 24: 1215–1222 (2008).
[60] محسنیان، سیده سمیه؛ آزادی، مهرناز؛ افشارپور، مریم؛ مظفر، فرهنگ؛ ارزیابی متغیرهای دما، فعالیت آبی، غلظت یون هیدروژن و زمان بر رشد قارچ­های آسپرژیلوس نایجر، پنی سیلیوم sp. و آلترناریا آلترناتا در کاغذهای تاریخی، فصلنامه تحقیقات تاریخی و مطالعات آرشیوی گنجینه اسناد، 3: 166 تا 202 (1397).
 [61]. Salgado J. M., Abrunhosa L., Venâncio A., Domínguez J. M., Belo I., Integrated Use of Residues from Olive Mill and Winery for Lipase Production by Solid State Fermentation with Aspergillus sp., Appl. Biochem. Biotechnol. 172:1832–1845 (2014).
[62]. Piegza M., Witkowska D., Stempniewicz R., Enzymatic and Molecular Characteristics of Geotrichum candidum Strains as a Starter Culture for Malting, J. Inst. Brew., 120: 341–346 (2014).
[63]. Ertan F., Balkanb B., Yarkına Z., Determination of the Effects of Initial Glucose on the Production of α-Amylase from Penicillium sp. under Solid-State and Submerged Fermentation, Biotechnol. Biotechnol. Equip., 28(1): 96–101 (2014).
[64]. Puttananjaiah M. H., Dhale M. A., Glucose Released by Hydrolytic Activity of Amylase Influences the Pigment Synthesis in Penicillium sp NIOM-02, J. Basic Microbiol., 52: 1–5 (2012).
[65]. Chang L. T., McGrory E. L., Elander R. P., Penicillin Production by Glucose-Derepressed Mutants of Penicillium Chrysogenum, J. Ind. Microbiol., 6: 165-169 (1990).
[66]. Hamzaoui A. H., Jamoussi B., M'nif A., Lithium Recovery from Highly Concentrated Solutions: Response Surface Methodology (RSM) Process Parameters Optimization, Hydrometallurgy., 90: 1–7 (2008).
[67]. Wilcox R. R., Understanding the Practical Advantages of Modern ANOVA Methods, J. Clin. Child. Adolesc. Psychol., 31(3): 399–412 (2002).
[69]. Masoumi H. R. F., Kassim A., Basri M., Abdullah D. K., Determining Optimum Conditions for Lipase-Catalyzed Synthesis of Triethanolamine (TEA)-Based Esterquat Cationic Surfactant by a Taguchi Robust Design Method, Molecules. 16: 4672-4680 (2011).
[71]. Khayati G., Gilani H. G., Keyvani Z. S., Extraction of Cu (II) Ions from Aqueous Media Using PEG/Sulphate Salt Aqueous Two-Phase System, Sep. Sci. Technol., 51: 601-608 (2016).
 [72]. Nema A., Patnala S. H., Mandari V., Kota S., Devarai S. K., Production and Optimization of Lipase Using Aspergillus niger MTCC 872 by Solid-State Fermentation, Bull. Natl. Res. Cent. 43: 82-89 (2019).
[73]. Santos R. R., Muruci L. N. M., Damaso M. C. T., Silva J. P. L., Santos L. O., Lipase Production by Aspergillus Niger 11T53A14 in Wheat Bran Using Experimental Design Methodology, J. Food Nutr. Res., 2(10): 659-663 (2014).