Synthesis and Characterization of Carbon Nanotube-Metal Nanoparticles (Copper and Manganese) Nanohybrids and Their Application in Construction of‌ Electrode Modified with Ionic Liquid for Electrocatalysis of Acetaminophen Oxidation

Document Type : Research Article

Authors

Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, I.R.IRAN.

Abstract

In the present research work, multi-walled carbon nanotubes-metal nanoparticles (M-MWCNT; M = Cu, Mn) nanohybrids were prepared by chemical reduction method and the resulting nanohybrids were used for modification of carbon paste electrode (CPE) including 1-butyl 3-methyl-imidazolium hexafluorophosphate as an ionic liquid (IL). For this purpose, functionalized MWCNT and metallic precursors were chemically reduced by hydrazine monohydrate. Morphology and size of the particles were investigated by FE-SEM. FE-SEM studies showed the formation of Cu and Mn nanoparticles with average sizes of approximately 65 and 90 nm onto MWCNT surface, respectively. Elemental mapping of the prepared nanohybrids demonstrated relatively uniform dispersion of Cu and Mn nanoparticles onto the MWCNT surface. By XRD, the crystalline structure of copper and manganase nanoparticles in nanohybrides was identified. The capability of the CPEs including IL and resulting nanohybrides for electrocatalytic oxidation of acetaminophen was studied in 0.1 M phosphate buffer solution (pH=7.0). The obtained results showed the good electrocatalytic activity of modified electrodes towards acetaminophen oxidation. Also, M-MWCNT/IL/CPE nanohybrid in addition of high surface area, due to the synergistic effect, showed higher electrocatalytic activity towards acetaminophen oxidation that those other electrodes used in this research. Detection limits for Cu-MWCNT/IL/CPE were obtained 6.7 and 0.35 μM by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. Also, for Mn-MWCNT/IL/CPE, detection limits were calculated 4.6 and 0.2 μM by CV and DPVmethods, respectively.

Keywords

Main Subjects


[1] صلواتی ح.، طایی م.، رسولی ن.، ظهور ع.، آشیان گ.، کاربرد الکترود اصلاح شده با نانوذره‌های مغناطیسیNiCuFe2O4  با ساختار اسپینلی برای اندازه‌گیری ناپروکسن در حضور استامینوفن، مجله شیمی کاربردی، 14: 119 تا 134 (1398).
[5] Ma B., Guo H., Wang M., Wang Q., Yang W., Wang Y., Yang W., Electrocatalysis and Simultaneous Determination of Hydroquinone and Acetaminophen using PN-COF/Graphene Oxide Modified Electrode, Microchem. J., 155: 104776 (2020).
[7] Liu W., Shi Q., Zheng G., Zhou J., Chen M., Electrocatalytic Oxidation Toward Dopamine and Acetaminophen based on AuNPs@TCnA/GN Modified Glassy Carbon Electrode, Anal. Chim. Acta, 1075: 81-90 (2019).
[8] Wu C., Li J., Liu X., Zhang H., Li R., Wang G., Wang Z., Li Q., Shangguan E., Simultaneous Voltammetric Determination of Epinephrine and Acetaminophen using a Highly Sensitive CoAl-OOH/Reduced Graphene Oxide Sensor in Pharmaceutical Samples and Biological Fluids, Mater. Sci. Eng. C, 119: 111557 (2021).
[10]  Wang H.,  Qian D.,  Xiao X., Deng C.,  Liao L.,  Deng J., Ying-Wu L., Preparation and Application of a Carbon Paste Electrode Modified with Multi-Walled Carbon Nanotubes and Boron-Embedded Molecularly Imprinted Composite Membranes, Bioelectrochem., 121: 115-124 (2018).
[11] Maleki N., Safavi A., Tajabadi F., High-Performance Carbon Composite Electrode based on an Ionic Liquid as a Binder. Anal. Chem., 78(11): 3820-3826 (2006).
[12] Sun P., Armstrong D.W., Ionic Liquids in Analytical Chemistry, Anal. Chim. Acta., 661(1): 1-16 (2010).‏
[14] Fukushima T., Kosaka A., Ishimura Y., Yamamoto T., Takigawa T., Ishii N., Aida T., Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes, Science, 300(5628): 2072-2074 (2003).
[15] Zhu M., Nie G., Meng H., Xia T., Nel A., Zhao Y., Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate, Acc. Chem. Res., 46(3): 622-631 (2013).
[17] Polo-Luque M.L., Simonet B.M., Valcárcel M., Functionalization and Dispersion of Carbon Nanotubes in Ionic Liquids, TrAC Trends Anal. Chem., 47: 99-110 (2013).
[19] Fan Y.J., Wu S.F., A Graphene-Supported Copper-based Catalyst for the Hydrogenation of Carbon Dioxide to form Methanol, J. CO2 Utilization, 16: 150-156 (2016).
[20] Kobayashi Y., Ishida S., Ihara K., Yasuda Y., Morita T., Yamada S., Synthesis of Metallic Copper Nanoparticles Coated with Polypyrrole, Coll. Polymer Sci., 287: 877-880 (2009).
[21] Mondal C., Ghosh D., Aditya T., Sasmal A.K., Pal T., Mn3O4 Nanoparticles Anchored to Multiwall Carbon Nanotubes: a Distinctive Synergism for High-Performance Supercapacitors, New J. Chem., 39: 8373-8380 (2015).
[22] Yu H., Song S.W., Lian Y.Y., Liu Z.Y., Qi G.C., Electrochemical Preparation of Copper Hexacyanoferrate Nanoparticles under the Synergic Action of EDTA and HAuCl4, J. Electroanal. Chem., 650: 82-89 (2010).
[27] Tavana T., Khalilzadeh M.A., Karimi-Maleh H., Ensafi A.A., Beitollahi H., Zareyee D., Sensitive Voltammetric Determination of Epinephrine in the Presence of Acetaminophen at a Novel Ionic Liquid Modified Carbon Nanotubes paste ElectrodeJ. Mol. Liquids168: 69-74‏ (2012).
[30] Wang S.F., Xie F., Hu R.F., Carbon-Coated Nickel Magnetic Nanoparticles Modified Electrodes as a Sensor for Determination of AcetaminophenSens. Actu. B: Chem., 123(1): 495-500 (2007).