Experimental Study of Thermal Stability of TiO2 in Presence of Dopants and Silica as a Catalyst Support at High Temperatures

Document Type : Research Article


Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, I.R.IRAN


One method to prevent contamination of glazed building tiles by volatile organic materials is coating their surfaces with nanophotocatalyst titanium dioxide, preferably at temperatures above 1000 °C. However, at such high temperatures titanium is subjected to phase change and cannot maintain its photocatalytic properties. In other words, the conventional coating methods encounter phase change problem. The main purpose of this experimental research is to resolve the aforementioned problem to maintain the thermal stability of titanium dioxide at temperatures more than 1000C. In order to achieve this purpose, silica and duPont two-component were used. Silica-based titanium dioxide nanostructure was doped with N and Ni ions. Then the coating materials were calcined at 1250 °C. FTIR, SEM, XRD, EDX and TGA technics were used for nanostructure analysis which indicated thermal stability of the nanostructure up to 1250 °C. The main advantage of the utilized coating method is its simplicity and economically reasonability.  Titanium has a catalytic effect only in the UV region. In order to enjoy the benefits of the visible light, the nanostructure was modified with different ions. Note that, the titanium dioxide has three phases, namely anatase, rutile and brookite, among which photocatalytic properties of anatase have received more attentions. DuPont and silica together cause a delayed phase change from anatase to rutile at high temperatures. The delay is very essential for some industrial applications such as preserving self-cleaning properties of surfaces after they have been coated. The resulting environmental impact is less consumption of chemical detergents. Results indicate that for titanium dioxide the presence of the anatase phase at 700 °C is 83%, but at 800 °C anatase completely converts to rutile phase. Furthermore, catalyst modifications by duPont two-component using silica along with calcination at higher temperatures makes anatase phase to grow. So that at 1250 °C it comprises 86% of the nanostructure.


[1] Spengler J.D., Samet J.M., McCarthy J.F., “Indoor Air Quality Handbook”, (2001).
[2] Ho K.Y., “Nanostructured Environmental Catalysts for Carbon Monoxide and Volatile Organic Compounds Removal”, Ph.D. Thesis, Hong Kong University of Science and Technology, Hong Kong, (2006).
[3] Wang S., Ang H., Tade M.O., Volatile Organic Compounds in Indoor Environment and Photocatalytic Oxidation: State of the Art, Environment international., 33(5): 694-705 (2007).
[4] Maggos T.H., Plassais A., Bartzis J.G., Vasilakos C.H., Moussiopoulos N., Bonafous L., Photocatalytic Degradation of NOx in a Pilot Street Canyon Configuration using TiO2-Mortar Panels, Environmental Monitoring and Assessment, 136(1-3): 35-44 (2008).
[5] Janus M., Zatroska J., Czyzewski A., Zając K., Self-Cleaning Properties of Cement Plates Loaded with N, C-Modified TiO2 Photocatalysts, Applied Surface Science, 330: 200-206 (2015).
[6] Fujishima A., Rao T.N., Tryk D.A., Titanium Dioxide Photocatalysis, Journal of photochemistry and photobiology C: Photochemistry reviews, 1(1): 1-21 (2000).
[8]  Zhang H., Xing Z., Zhang Y., Zhenzi Li ., Chuntao L., Zhou W., Ni2+ and Ti3+ Co-Doped porous Black Anatase TiO2 with Unprecedented-High Visible-Light-Driven Photocatalytic Degradation Performance, RSC Advances, 5(129): 107150-107157 (2015).
[9] Hosseini Z.M., Coating of ZnO–TiO2 Nano Composite on Ceramic Tiles by Sol-Gel and Photocatalytic Property Study, International Color & Coating Congress, (2015).
[10] Ducman V., Petrovič S.D., Photo-Catalytic Efficiency of Laboratory Made and Commercially Available Ceramic Building Products, Ceramics International, 39(3): 2981-2987 (2013).
[11] Khairy M., Zakaria W., Effect of Metal-Doping of TiO2 Nanoparticles on their Photocatalytic Activities Toward Removal of Organic Dyes, Egyptian Journal of Petroleum, 23(4): 419-426 (2014).
[13] Zou H., Wu S., Shen J., Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications, Chem. Rev., 108: 3893 (2008).
[14] Pasikhani J.V., Gilani N., Pirbazari A.E, The Effect of the Anodization Voltage on theGeometrical Characteristics and Photocatalytic Activity of TiO2 Nanotube Arrays, Nano-Structures & Nano-Objects, 8: 7–14 (2016).
[15] Ganesh I., Kumar P.P., Sekhar P.S.C., Radha K., Padmanabham G., Sundararajan G., Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications, The Scientific World Journal, 2012: 127326 (2012)
[16] Furlong D., Sing K., Parfitt G., The Precipitation of Silica on Titanium Dioxide Surfaces: I. Preparation of Coated Surfaces and Examination by Electrophoresis, Journal of Colloid and Interface Science, 69(3): 409-419 (1979).
[17] Xo J., Ao Y.H., Fu D., Yuan C., A Simple Route for the Preparation of Eu, N-Codoped TiO2 Nano Particles with Enhanced Visible Light-Induced Photocatalytic Activity, J. Colloid Interface Sci., 328(2): 447–451 (2008).
[18] Banerjee S., Dionysiou D.D., Pillai S.C., Self-Cleaning Applications of TiO2 by Photo-Induced Hydrophilicity and Photocatalysis, Applied Catalysis B: Environmental, 176: 396–428 (2015).
[19] Chand R., Obuchi E., Katoh K., Nath Luitel H., Nakano K., Enhanced Photocatalytic Activity of TiO2/SiO2 by the Influence of Cu-Doping under Reducing Calcination Atmosphere, Catalysis Communications, 13(1): 49-53 (2011).
[20] وهاب‌زاده پسیخانی ج.، گیلانی ن.، ابراهیمیان پیربازاری آ.، بررسی عملکرد کاتالیست نوریی نانولوله‌های هم راستای تیتانیوم دی اکسید در محلول‌های آلاینده آلی دارای هیدروژن پراکسید، نشریه شیمی و مهندسی شیمی ایران، (4)36: 137 تا 144 (1396).
[21] Fagan R., Mcormack E.D., Hinder S., Pillai C.S., Improved High Temperature Stability of Anatase TiO2 Photocatalysts by N, F, P Codoping, Materials & Design, 96: 44-53 (2016).
[22]   Kang C., Jing L., Guo T., Cui H., Zhou J., Fu H., Mesoporous SiO2-Modified Nanocrystalline TiO2 with High Anatase Thermal Stability and large Surface Area as Efficient Photocatalyst, The Journal of Physical Chemistry C, 113(3): 1006-1013 (2008).
[23] Binas V., Venieri D., Kotzias D., Kiriakidis G., Modified TiO2 based Photocatalysts for Improved Air and Health Quality, Journal of Materiomics, 3(1): 3-16 (2017).
 [24] بشارتی سیدانی ع.، غلامی م.ر.، تخریب فوتوکاتالیستی یک نمونه رنگ آزو به کمک نانو کامپوزیت‌های بر پایه TiO2 اصلاح شده با فلزهای Pt، Pd و Ni، نشریه شیمی و مهندسی شیمی ایران، (1)34: 39 تا 49 (1394).
[25] Wei X., Zhu G., Fang J., Chen J., Synthesis, Characterization, and Photocatalysis of Well-Dispersible Phase-Pure Anatase TiO2 Nanoparticles, International Journal of Photoenergy, 2013: 726872 (2013).
[26] Teixeira da Fonseca Bruna, Elia E., Siqueira Júnior J.M., de Oliveira S.M., Castro K.L.d.S., Ribeiro E.S., Study of the Characteristics and Properties of the SiO2/TiO2/Nb2O5 Material Obtained by the Sol–Gel Process, Scientific Reports., 11(1): (2021).
 [27] Baheiraei N., Moztarzadeh F., Hedayati M., Preparation and Antibacterial Activity of Ag/SiO2 Thin Film on Glazed Ceramic Tiles by Sol–Gel Method, Ceramics international, 38(4): 2921- 2925 (2012).
[28] Leyland N.S., Carroll J.P., Browne J., Hinder S.J., Quilty B., Pillai S.C., Highly Efficient F, Cu Doped TiO2 Anti-Bacterial Visible Light Active Photocatalytic Coatings to Combat Hospital-Acquired Infections, Scientific reports, 6: 24770 (2016).
[29] Huang W.F., Raghunath P., Computational Study on the Reactions of H2O2 on TiO2 Anatase (101) and Rutile (110) Surfaces, Journal of Computational Chemistry, 32: 1065-1081 (2010).
[30] Habisreutinger S.N., Schmidt‐Mende L., Stolarczyk J.K., Photocatalytic Reduction of CO2 on TiO2 and other Semiconductors. Angewandte Chemie International Edition, 52(29): 7372-7408 (2013).
[31] Zhao L., Yua X., Zhanga S., Menghui J, Changa M., Pana H., Wang W., Xu J., The Phosphorescence and Excitation-Wavelength Dependent Fluorescence Kinetics of Large-Scale Graphene Oxide Nanosheets, RSC Advances, 7(37): 22684-22691 (2017).
[32] Salvaggio M.G., Passalacqua R., Abate S., Perathoner S., Centi G., Transparent Nanostructured Titania Coatings with Self-Cleaning and Antireflective Properties for Photovoltaic Glass Surfaces, CEt Chem. Eng. Trans, 43: 745-750 (2015).
[33] Baryshnikov G., Minaev B., Ågren H., Theory and Calculation of the Phosphorescence Phenomenon, Chemical reviews, 117(9): 6500-6537 (2017).
[34] Boyce J.M., Modern Technologies for Improving Cleaning and Disinfection of Environmental Surfaces in Hospitals, Antimicrobial Resistance & Infection Control, 5: 10 (2016).
[35] Minaev B., Baryshnikov G., Agren H., Principles of Phosphorescent Organic Light Emitting Devices, Physical Chemistry Chemical Physics, 2014(5): (2014).
[36] Chien D.M., Dung D.T.M., Dam L.D., Preparation of Nitrogen Co-Doped SiO2/TiO2 Thin Films on Ceramic with Enhanced Photocatalytic Activity under Visible-Light Irradiation, Journal of Experimental Nanoscience, 7(3): 254-262 (2012).
[37] Harvey D., “Modern Analytical Chemistry”, McGraw-Hill New York, (2000).
[38] Ke S., Cheng X., Wang Q., Wang Y., Preparation of a Photocatalytic TiO2/ZnTiO3 Coating on Glazed Ceramic Tiles, Ceramics International, 40(6): 8891-8895 (2014).
[39] Kusano D., Emori M., Sakama H., Influence of Electronic Structure on Visible Light Photocatalytic Activity of Nitrogen-Doped TiO2. RSC Advances, 7(4): 1887-1898 (2017).
[40] Fagan R., Synnott D.W., McCormack  D.E., Pillai S.C., An Effective Method for the Preparation of High Temperature Stable Anatase TiO2 Photocatalysts, Applied Surface Science, 371: 447-452 (2016).
[41] Wang S., Ang H., Tade M.O., Volatile Organic Compounds in Indoor Environment and Photocatalytic Oxidation: State of the Art, Environment international, 33(5): 694-705 (2007).