Adsorptive Desulfurization Performance in Thiopheice Sulfur Compounds Removal from Gasoline Model Fuel by Modified HZSM-5 Zeolite Adsorbent

Document Type : Research Article

Authors

Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Mazandaran, I.R.IRAN

Abstract

Adsorption capacity and selectivity are two fundamental challenges in which adsorption desulphurization faces. One way to overcome this challenge is to use mesoporous zeolites. In this study, the effects of mesoporosity on the adsorption desulphurization performance with mesoporous HZSM-5 zeolite adsorbents, which have been synthesized by desilication operation in an alkaline environment using a NaOH solution at concentrations of 0.2 and 0.5 M, as well as a mixture of base solution NaOH/TPAOH (0.5 M) with molar ratios of R=TPAOH/(NaOH+TPAOH) =0, 0.2, 0.4, 0.6 at 75  for 2.5 hours were investigated and the results were compared with the parent microporous zeolite. The characteristics of synthesized adsorbents were determined by XRD, BET, FE-SEM and FT-IR analyses. The results showed that different ratios of NaOH/TPAOH solution in desilication operations play an important role in adsorbing sulfur compounds. Compared with the parent microporous zeolite, the mesoporous HZSM-5 adsorbent with concentration of 0.5 M and molar ratio of TPAOH/(NaOH+TPAOH) =0.4 ensures the formation of narrow and uniform intracrystalline mesoporosity without severely damaging the crystal structure, which resulted in the best adsorption desulphurization performance, including the highest adsorption capacity of thiophene and dibenzothiophene with values ​​of 16.6 and 6.7 mg/g, respectively. In this regard, the effect of temperature on this adsorbent on the adsorption of thiophene sulfur compound was investigated. The results showed that the adsorption of thiophene sulfur compound increases with increasing temperature and reaches a maximum of 18.4 mg/g at 65 . Thermodynamic studies showed that the adsorption process is endothermic. Kinetic models of adsorption of sulfur compounds followed the pseudo-first-order equation (R2 = 0.99).

Keywords

Main Subjects


[1] Mohr S., Wang J., Ellem G., Ward J., Giurco D., Projection of World Fossil Fuels by Country, Fuel, 141: 120-135 (2015).
[2] U.S. Environmental Protection Agency, Integrated Science Assessment for Sulfur Oxides, Health Criteria, (2009).  
[3] U.S. Environmental Protection Agency, Integrated Science Assessment for Oxides of Nitrogen, Health Criteria, (2016).  
[4] Fang W., Inventory of US Greenhouse Gas Emissions and Sinks, 1990–2003, Clean Air Markets Division, 12: 759-783 (2004).
[5] Shiraishi Y., Hirai T., Komasawa I., A Deep Desulfurization Process for Light Oil by Photochemical Reaction in an Organic Two-Phase Liquid− Liquid Extraction System, Industrial & engineering chemistry research, 37(1): 203-211 (1998).
[6] Paucar N.E., Kiggins P., Blad B., De Jesus K., Afrin F., Pashikanti S., Sharma K., Ionic Liquids for the Removal of Sulfur and Nitrogen Compounds in Fuels: A Review, Environmental Chemistry Letters, 19: 1205-1228 (2021).
[8] Subhan F., Aslam S., Yan Z., Liu Z., Etim U.J., Wadood A., Ullah R., Confinement of Mesopores within Zsm-5 and Functionalization with Ni Nps for Deep Desulfurization, Chemical Engineering Journal, 354: 706-715 (2018).
[9] Tian F., Shen Q., Fu Z., Wu Y., Jia C., Enhanced Adsorption Desulfurization Performance over Hierarchically Structured Zeolite Y, Fuel Processing Technology, 128: 176-182 (2014).
[10] Ahmadpour J., Ahmadi M., Javdani A., Hydrodesulfurization Unit for Natural Gas Condensate, Journal of Thermal Analysis and Calorimetry, 135(3): 1943-1949 (2018).
[12] Chen X., Yuan S., Abdeltawab A.A., Al-Deyab S.S., Zhang J., Yu L., Yu G., Extractive Desulfurization and Denitrogenation of Fuels using Functional Acidic Ionic Liquids, Separation and Purification Technology, 133: 187-193 (2014).
[13] Martinez I., El-Said Mohamed M., Santos V.E., Garcia J.L., Garcia-Ochoa F., Diaz E., Metabolic and Process Engineering for Biodesulfurization in Gram-Negative Bacteria, J Biotechnol, 262: 47-55 (2017).
[14] Song H., Wan X., Dai M., Zhang J., Li F., Song H., Deep Desulfurization of Model Gasoline by Selective Adsorption over Cu–Ce Bimetal Ion-Exchanged Y Zeolite, Fuel Processing Technology, 116: 52-62 (2013).
[15] Sarda K.K., Bhandari A., Pant K.K., Jain S., Deep Desulfurization of Diesel Fuel by Selective Adsorption over Ni/Al2O3 and Ni/ZSM-5 Extrudates, Fuel, 93: 86-91 (2012).
[17] Srivastav A., Srivastava V.C., Adsorptive Desulfurization by Activated Alumina, J. Hazard. Mater., 170(2-3): 1133-1140 (2009).
[18] Subhan F., Aslam S., Yan Z., Ahmad A., Etim U.J., Naeem M., Zhen L., Ikram M., Yaseen M., Highly Dispersive Lanthanum Oxide Fabricated in Confined Space of Sba-15 for Adsorptive Desulfurization, Chemical Engineering Journal, 384: 123271 (2020).
[19] Tian F., Fu Z., Zhang H., Zhang J., Chen Y., Jia C., Thiophene Adsorption onto Metal–Organic Framework Hkust-1 in the Presence of Toluene and Cyclohexene, Fuel, 158: 200-206 (2015).
[20] Takahashi A., Yang F.H., Yang R.T., New Sorbents for Desulfurization by Π-Complexation: Thiophene/Benzene Adsorption, Industrial & Engineering Chemistry Research, 41(10): 2487-2496 (2002).
[21] Weitkamp J., Zeolites and Catalysis, Solid state ionics, 131(1-2): 175-188 (2000).
[22] رحمانی, نیلوفر؛ باقری گرمارودی, امیر؛ خانمحمدی خرمی, محمدرضا؛ بهینه سازی شرایط سنتز نانوزئولیت ZSM-5 بدون قالب با استفاده از طراحی آزمایش، نشریه شیمی و مهندسی شیمی ایران، 37(3): 27-36 (1397).
[23] Kanyi C., Mesoporous Zeolites: Preparation, Characterization and Applications, Johnson Matthey Technology Review, 60(1): 25-28 (2016).
[24] Hemelsoet K., Van der Mynsbrugge J., De Wispelaere K., Waroquier M., Van Speybroeck V., Unraveling the Reaction Mechanisms Governing Methanol‐to‐Olefins Catalysis by Theory and Experiment, Chem. Phys. Chem, 14(8): 1526-1545 (2013).
[25] دشت پیما, قاسم؛ شعبانیان, سیدرضا؛ احمدپور, جواد؛ نیک زاد, مریم؛ بررسی آزمایشگاهی جذب سطحی ترکیب‌های گوگردی از نمونه سوخت بنزینی ساختگی توسط جاذب زئولیتی NaY اصلاح شده، نشریه شیمی و مهندسی شیمی ایران، 41(4): 131-154 (1401).
[26] Lee K.X., Valla J.A., Investigation of Metal-Exchanged Mesoporous Y Zeolites for the Adsorptive Desulfurization of Liquid Fuels, Applied Catalysis B: Environmental, 201: 359-369 (2017).
[27] Möller K., Bein T., Mesoporosity–a New Dimension for Zeolites, Chemical Society Reviews, 42(9): 3689-3707 (2013).
[28] Li H., Dong L., Zhao L., Cao L., Gao J., Xu C., Enhanced Adsorption Desulfurization Performance over Mesoporous ZSM-5 by Alkali Treatment, Industrial & Engineering Chemistry Research, 56(14): 3813-3821 (2017).
[29] Zhao L., Gao J., Xu C., Shen B., Alkali-Treatment of ZSM-5 Zeolites with Different SiO2/Al2O3 Ratios and Light Olefin Production by Heavy Oil Cracking, Fuel Processing Technology, 92(3): 414-420 (2011).
[30] Lu Y., Wang R., Nan Y., Liu F., Yang X., Removal of Sulphur from Model Gasoline by Cuagy Zeolite: Equilibrium, Thermodynamics and Kinetics, RSC Advances, 7(81): 51528-51537 (2017).
[31] Hernández-Maldonado A.J., Yang R.T., Desulfurization of Commercial Liquid Fuels by Selective Adsorption Via Π-Complexation with Cu (I)− Y Zeolite, Industrial & engineering chemistry research, 42(13): 3103-3110 (2003).
[32] Zhang Z.Y., Shi T.B., Jia C.Z., Ji W.J., Chen Y., He M.Y., Adsorptive Removal of Aromatic Organosulfur Compounds over the Modified Na-Y Zeolites, Applied Catalysis B: Environmental, 82(1-2): 1-10 (2008).
[33] Groen J.C., Jansen J.C., Moulijn J.A., Pérez-Ramírez J., Optimal Aluminum-Assisted Mesoporosity Development in Mfi Zeolites by Desilication, The Journal of Physical Chemistry B, 108(35): 13062-13065 (2004).
[35] Sadowska K., Góra-Marek K., Drozdek M., Kuśtrowski P., Datka J., Martinez Triguero J., Rey F., Desilication of Highly Siliceous Zeolite ZSM-5 with Naoh and Naoh/Tetrabutylamine Hydroxide, Microporous and Mesoporous Materials, 168: 195-205 (2013).
[36] Groen J.C., Peffer L.A., Moulijn J.A., Perez-Ramirez J., Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore-Directing Agent, Chemistry, 11(17): 4983-4994 (2005).
[37] Wu G., Wu W., Wang X., Zan W., Wang W., Li C., Nanosized ZSM-5 Zeolites: Seed-Induced Synthesis and the Relation between the Physicochemical Properties and the Catalytic Performance in the Alkylation of Naphthalene, Microporous and mesoporous materials, 180: 187-195 (2013).
[38] Velu S., Ma X., Song C., Selective Adsorption for Removing Sulfur from Jet Fuel over Zeolite-Based Adsorbents, Industrial & engineering chemistry research, 42(21): 5293-5304 (2003).
[39] Mo Z., Wang S., Hui Y., Kong W., Zhai P., Wang H., Zu Y., Qin Y., Song L., Enhanced Adsorption Desulfurization Performance over Cucey Zeolites Prepared by Low‐Temperature Calcination under H2 Atmosphere, ChemistrySelect, 5(41): 12711-12720 (2020).
[40] Liao J., Zhang Y., Fan L., Chang L., Bao W., Insight into the Acid Sites over Modified Nay Zeolite and Their Adsorption Mechanisms for Thiophene and Benzene, Industrial & Engineering Chemistry Research, 58(11): 4572-4580 (2019).
[41] Sun H.-Y., Sun L.-P., Li F., Zhang L., Adsorption of Benzothiophene from Fuels on Modified Nay Zeolites, Fuel Processing Technology, 134: 284-289 (2015).
[42] Wang J., Xu F., Xie W.J., Mei Z.J., Zhang Q.Z., Cai J., Cai W.M., The Enhanced Adsorption of Dibenzothiophene onto Cerium/Nickel-Exchanged Zeolite Y, J. Hazard Mater., 163(2-3): 538-543 (2009).
[43] Montazerolghaem M., Rahimi A., Seyedeyn-Azad F., Equilibrium and Kinetic Modeling of Adsorptive Sulfur Removal from Gasoline by Synthesized Ce–Y Zeolite, Applied Surface Science, 257(2): 603-609 (2010).
[45] Huang Y., Ma X., Liang G., Yan Y., Wang S., Adsorption Behavior of Cr (VI) on Organic-Modified Rectorite, Chemical Engineering Journal, 138(1-3): 187-193 (2008).
[46] Ho Y.-S., Review of Second-Order Models for Adsorption Systems, Journal of hazardous materials, 136(3): 681-689 (2006).
[47] Ishaq M., Sultan S., Ahmad I., Ullah H., Yaseen M., Amir A., Adsorptive Desulfurization of Model Oil Using Untreated, Acid Activated and Magnetite Nanoparticle Loaded Bentonite as Adsorbent, Journal of Saudi Chemical Society, 21(2): 143-151 (2017).
[48] Kan C.-C., Ibe A.H., Rivera K.K.P., Arazo R.O., de Luna M.D.G., Hexavalent Chromium Removal from Aqueous Solution by Adsorbents Synthesized from Groundwater Treatment Residuals, Sustainable Environment Research, 27(4): 163-171 (2017).
[49] Saha P., Chowdhury S., Insight into Adsorption Thermodynamics, Thermodynamics, 16: 349-364 (2011).