Metal Porphyrin (M-TPP) Complexed with Cysteine along with Hydrogel and Vesicle Scaffolds as Peroxidase and Catalase Nanozymes

Document Type : Research Article

Authors

1 Chemistry and Chemical Engineering Research Center of Iran, Tehran, , I.R. IRAN

2 Department of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, , I.R. IRAN

Abstract

Porphyrins can be widely considered as active site biocomplexes, while biomimetic-based synthetic metal porphyrins can be used as pseudo-enzymes. A system consisting of a metal porphyrin-cysteine complex and a “polyethylene glycol (PEG)” polymer or a mixture of the active surfactants "sodium dodecyl sulfate and dodecyl triethyl ammonium bromide (SDS/DTAB)" was used for native-chloroperoxidase model. Native chloroperoxidase could have the function of peroxidase, ie oxidation of substrates at different pHs. In the absence of a suitable substrate, chloroproxidase decomposes hydrogen peroxide indicating catalase activity. Metal-tetra (2-pyridyl) porphyrin (M-TPP), which is more resonant, is more potent than heme (as the native-enzyme active site) in its pseudo-peroxidase and catalase activity. Fe-TTP has the highest peroxidase activity among metal-porphyrins with central metals including iron (III), manganese (III) and zinc (II). The triple component: "Fe-TPP-cysteine-PEG" is most effective by reducing the Michaelis-Menten (KM) parameter. It is observed that the hydrophobicity of porphyrin increases with the change of the central metal to iron (III), manganese (III) and zinc (II), respectively. In this case, the hydrophobicity of the active site of the peroxidase-like nanozyme is a potential for more hydrophobic substrate (guaiacol) to enter the reaction cycle, resulting in greater Fe-TPP activity and efficiency than other M-TPP complexes. In the next step, to design the catalase biocatalyst, Mn-TPP has the highest catalase activity among other metal-porphyrins mentioned. The triple component: "Mn-TPP-cysteine-SDS/DTAB " is most effective by reducing the Michaelis-Menten (KM) parameter. Transmission electron microscopy shows M-TPP-cysteine-PEG nanozymes as multi-holes hydrogel colloids, compared to M-TPP-cysteine-SDS/DTAB single-hole vesicle catalyst, which indicates a higher efficiency through the higher specific surface area for effective treatment of peroxidase nanozyme with organic substrate.

Keywords

Main Subjects


[1] موسوی موحدی ز.، فنآوری­ های جدید بر مبنای دانش زیست الگو و الهام زیستی، نشاء علم، 7(1): 53-61 (2016).
[2] Abedanzadeh S., Nourisefat M., Moosavi-Movahedi Z., "Bioinspiration and Biomimicry in Lifestyle, Rationality and Scientific Lifestyle for Health", Springer International Publishing, Cham )2021(.
[3] Moosavi-Movahedi Z., Gharibi H., Hadi-Alijanvand H., Akbarzadeh M., Esmaili M., Atri M.S., Sefidbakht Y., Bohlooli M., Nazari K., Javadian S., Hong J., Saboury A.A., Sheibani N., Moosavi-Movahedi A.A., Caseoperoxidase, Mixed Β-Casein–SDS–Hemin–Imidazole Complex: A Nano Artificial Enzyme, J. Biomol. Struct. Dyn. 33(12) 2619-2632 (2015).
[4] Breslow R., Biomimetic Chemistry: Biology as An Inspiration, J. Biol. Chem. 284(3): 1337-42 (2009).
[5] Breslow R., Biomimetic Chemistry, Pure Appl. Chem. 66(8): 1573-1582 (1994).
[6] Moiani D., Salvalaglio M., Cavallotti C., Bujacz A., Redzynia I., Bujacz G., Dinon F., Pengo P., Fassina G., Structural Characterization of a Protein A Mimetic Peptide Dendrimer Bound To Human IgG, J. Phys. Chem. B 113(50): 16268-75 (2009).
[7] Liu W., Groves J.T., Manganese Porphyrins Catalyze Selective C-H Bond Halogenations, J. Am. Chem. Soc. 132(37): 12847-9 (2010).
[8] Groves J.T., Stern M.K., Olefin Epoxidation by Manganese (IV) Porphyrins: Evidence for Two Reaction Pathways, J. Am. Chem. Soc. 109(12): 3812-3814 (2002).
[9] Gharibi H., Moosavi-Movahedi Z., Javadian S., Nazari K., Moosavi-Movahedi A.A., Vesicular Mixed Gemini-SDS-Hemin-Imidazole Complex as A Peroxidase-Like Nano Artificial Enzyme, J. Phys. Chem. B 115(16): 4671-9 (2011).
[11] Manoj K.M., Hager L.P., Chloroperoxidase, A Janus Enzyme, Biochemistry, 47(9): 2997-3003 (2008).
[12] van Deurzen M.P.J., van Rantwijk F., Sheldon R.A., Selective Oxidations Catalyzed By Peroxidases, Tetrahedron, 53(39): 13183-13220 (1997).
[13] Colonna S., Gaggero N., Manfredi A., Casella L., Gullotti M., Carrea G., Pasta P., Enantioselective Oxidations of Sulfides Catalyzed by Chloroperoxidase, Biochemistry, 29(46): 10465-8 (1990).
[14] Lakner F.J., Hager L.P., Chloroperoxidase as Enantioselective Epoxidation Catalyst: An Efficient Synthesis of (R)-(-)-Mevalonolactone, J. Org. Chem. 61(11): 3923-3925 (1996).
[15] Colonna S., Gaggero N., Richelmi C., Pasta P., Recent Biotechnological Developments in the Use of Peroxidases, Trends Biotechnol. 17: 163-168. (1999).
[16] Corbett M.D., Chipko B.R., Baden D.G., Chloroperoxidase-Catalysed Oxidation of 4-Chloroaniline to 4-Chloronitrosobenze, Biochem. J 175(2): 353-60 (1978).
[17] Geigert J., Dalietos D.J., Neidleman S.L., Lee T.D., Wadsworth J., Peroxide Oxidation of Primary Alcohols to Aldehydes by Chloroperoxidase Catalysis, Biochem. Biophys. Res. Commun. 114(3): 1104-1108 (1983).
[18] Pešić M., López C., Álvaro G., López-Santín J., A Novel Immobilized Chloroperoxidase Biocatalyst with Improved Stability for the Oxidation of Amino Alcohols to Amino Aldehydes, J. Mol. Catal. B: Enzym. 84: 144-151 (2012).
[19] Veitch N.C., Horseradish Peroxidase: A Modern View of a Classic Enzyme, Phytochemistry, 65(3): 249-59 (2004).
[23] Derat E., Cohen S., Shaik S., Altun A., Thiel W., Principal Active Species of Horseradish Peroxidase, Compound I: A Hybrid Quantum Mechanical/Molecular Mechanical Study, J. Am. Chem. Soc. 127(39): 13611-21 (2005).
[24] Dunford H.B.,"Heme Peroxidases", John Wiley, New York (1999).
[25] Ivancich A., Jouve H.M., Sartor B., Gaillard J., EPR Investigation Of Compound I in Proteus Mirabilis and Bovine Liver Catalases: Formation of Porphyrin and Tyrosyl Radical Intermediates, Biochemistry, 36(31): 9356-64 (1997).
[26] Shevelkova A., Ryabov A., Irreversible Inactivation of Caldariomyces Fumago Chloroperoxidase by Hydrogen Peroxide, IUBMB Life, 39(4): 665-670 (1996).
[27] Poulos T.L., Kraut J., A Hypothetical Model of the Cytochrome C Peroxidase . Cytochrome C Electron Transfer Complex, J. Biol. Chem. 255(21): 10322-10330 (1980).
[28] Matsunaga I., Shiro Y., Peroxide-Utilizing Biocatalysts: Structural and Functional Diversity of Heme-Containing Enzymes, Curr. Opin. Chem. Biol. 8(2): 127-132 (2004).
[29] Ariga K., Li J., Fei J., Ji Q., Hill J.P., Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action, Adv. Mater. 28(6): 1251-86 (2016).
[30] Abe H., Liu J., Ariga K., Catalytic Nanoarchitectonics for Environmentally Compatible Energy Generation, Mater. Today, 19: 12-18 (2016).
[31] Hong J., Huang K., Wang W., Yang W.-Y., Zhao Y.-X., Xiao B.-L., Moosavi-Movahedi Z., Ghourchian H., Bohlooli M., Sheibani N., Moosavi-Movahedi A.A., Cytochrome C Embraced in Sodium Dodecyl Sulfate Nano-Micelle As A Homogeneous Nanostructured Peroxidase, Journal of the Iranian Chemical Society, 9(5): 775-782 (2012).
[32] Moosavi-Movahedi A.A., Semsarha F., Heli H., Nazari K., Ghourchian H., Hong J., Hakimelahi G.H., Saboury A.A., Sefidbakht Y., Micellar Histidinate Hematin Complex as An Artificial Peroxidase Enzyme Model: Voltammetric and Spectroscopic Investigations, Colloids Surf. Physicochem. Eng. Aspects, 320(1-3): 213-221 (2008).
[34] Moosavi-Movahedi Z., Kalejahi E.S., Nourisefat M., Maghami P., Poursasan N., Moosavi-Movahedi A.A., Mixed SDS-Hemin-Imidazole at Low Ionic Strength Being Efficient Peroxidase-Like As A Nanozyme, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 522: 233-241 (2017).
[35] معصومی ح.، جنگجوی شالدهی ط.، قنادزاده گیلانی ح.، بررسی عامل‌های مؤثر بر سامانه دو فازی دارای پلی اتیلن گلیکول4000 گرم بر مول و نمک های فسفات در استخراج مالیک اسید، نشریه شیمی و مهندسی شیمی ایران 39(4): 177-184 (2021).
[36] Sajadimehr Y., Moosavi‐Movahedi Z., Haghighi M.G., Miyardan A.B., Nourisefat M., Moosavi‐Movahedi A.A., Iron‐Porphyrin/Cysteine/PEG as Pseudo‐Chloroperoxidase Nanozyme, ChemistrySelect, 4(35): 10357-10364 (2019).
[37] Morshedi D., Rezaei-Ghaleh N., Ebrahim-Habibi A., Ahmadian S., Nemat-Gorgani M., Inhibition of Amyloid Fibrillation of Lysozyme by Indole Derivatives--Possible Mechanism of Action, FEBS J. 274(24): 6415-25 (2007).
[38] Akbarzadeh M., Moosavi-Movahedi Z., Shockravi A., Jafari R., Nazari K., Sheibani N., Moosavi-Movahedi A.A., Metallo-Vesicular Catalysis: A Mixture of Vesicular Cysteine/Iron Mediates Oxidative pH Switchable Catalysis, J. Mol. Catal. A: Chem. 424: 181-193 (2016).
[40] Zuev Y., Faizullin D., Idiyatullin B., Mukhitova F., Chobert J.-M., Fedotov V., Haertlé  T., Aggregation of Sodium Dodecyl Sulfate in Micellar Solution of β-Casein Analyzed by 1H-NMR Self-Diffusion, Relaxation and Fourier Transform IR Spectroscopy, Colloid & Polymer Science, 282(3): 264-269 (2004).
[41] Milton H.J., "Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications", Plenum Press, New York, (1992).
[42] Starks C.M., Liotta C.L., M. H., "Phase-Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives", Chapman and Hall, New York (1994).
[43] Thomas J.A., Morris D.R., Hager L.P., Chloroperoxidase : VII. Classical Peroxidatic, Catalatic, And Halogenating Forms Of The Enzyme, J. Biol. Chem. 245(12): 3129-3134 (1970).
[44] Northrop D.B., On the Meaning of Km and V/K in Enzyme Kinetics, J. Chem. Educ. 75(9): 1153 (1998).
[45] Parlato M., Reichert S., Barney N., Murphy W.L., Poly (Ethylene Glycol) Hydrogels with Adaptable Mechanical and Degradation Properties for Use in Biomedical Applications, Macromol. Biosci. 14(5): 687-698 (2014).
[46] Li Z., Su Y., Xie B., Wang H., Wen T., He C., Shen H., Wu D., Wang D., A Tough Hydrogel–Hydroxyapatite Bone-Like Composite Fabricated In Situ By The Electrophoresis Approach, Journal of Materials Chemistry B, 1(12): 1755-1764 (2013).
[47] Moosavi-Movahedi Z., Kafi M.M., Sajadimehr Y., Abedanzadeh S., Mixed Copper(II)–Cysteine–SDS–DTAB as Multi-Oxidative Vesicular Nanozyme, Journal of the Iranian Chemical Society, 19: 475-487 (2021).
[48] Abeles R.H., Frey P.A., Frey, Jencks W.P., "Biochemistry", Jones and Bartlett (1992).
[49] Tezuka M., Ohkatsu Y., Osa T., Reduction and Oxidation Potentials of Metal-free and Cobalt Tetra (p-substituted phenyl) porphyrins, Bull. Chem. Soc. Jpn. 49(5): 1435-1436 (1976).
[50] Harrison P.M., "Metalloproteins: Metal Proteins With Non-Redox Roles", Macmillan (1985).