Computational Study of the Antioxidant Properties of Vitamin E and Its Ability to Scavenge Alkyl Peroxide Radicals

Document Type : Research Article

Authors

Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan, I.R. IRAN

Abstract

In this study, the antioxidant activity of alpha-tocopherol, α-TOCO, one of the eight forms of vitamin E with CCl3O2 radical using density functional theory, DFT, and conductor-like polarizable continuum model, CPCM, at the B3LYP/6-31G** level of theory and three different phases of gas, oil and water have been studied. Interaction energy calculations show that there is a gravitational force between the radical and α-TOCO and their values in the oil and water phases are more than the gas phase. Mechanisms study of electron transfer, hydrogen atom abstraction, and radical addition show that the radical addition process is more thermodynamically desirable than other reactions and that the oil and aqueous phases are both suitable for this type of process. The values of the calculated reactivity quantities show that α-TOCO tends to oxidize against radicals, that this tendency is more in the aqueous phase than the others. Also, by radical adsorption on α-TOCO in each phase, the antioxidant property of α-TOCO decreases and its electroaccepting increases. The results of TD-DFT calculations show that the maximum absorption wavelength, λmax, and the corresponding oscillator strength, fmax, for α-TOCO in the oil phase are greater than those in the gas and aqueous phases. λmax and fmax change significantly by radical adsorption on α-TOCO, and in the oil and water phases, λmax of the complex is approximately equal to the wavelength of red light. The results of calculations of atoms in molecules, AIM, show that the interactions between α-TOCO and radical in all three phases are of the type of hydrogen bond and van der Waals, with the difference that the number of bonds and the strength of the bonds are reduced from the oil to water phase and from water to gas phase, respectively. This result corresponds to the calculated values for the interaction energies.

Keywords

Main Subjects


[1] شاکر حسینی، ر؛ آزاد بخت، م؛ ویتامین ­ها ،انتشارات گرایش، ص. 25، (1383).
[2] Singh V.K., Beattie L.A., Seed T.M., Vitamin E: Tocopherols and Tocotrienols as Potential Radiation Countermeasures, J. Radiat. Res., 54(6): 973–988 (2013).
[3] Leopoldini M., Marino T., Russo N., Toscano M., Antioxidant Properties of Phenolic Compounds:  H-Atom versus Electron Transfer Mechanism, J. Phys. Chem. A, 108(22): 4916–4922 (2004).
[4] Burton G.W., Doba T., Gabe E.J., Hughes L., Lee F.L., Prasad L., Autoxidation of Biological Molecules. 4. Maximizing the Antioxidant Activity of Phenols, J. Am. Chem. Soc., 107(24): 7053-7065 (1985).
[5] Burton G.W., Hughes L., Ingold K.U., Antioxidant Activity of Phenols Related to Vitamin E. Are There Chain-Breaking Antioxidants better than .Alpha.-Tocopherol?, J. Am. Chem. Soc., 105(18): 5950-5951 (1983).
[6] Burton G.W., Le Page Y., Gabe E.J., Ingold K.U., Antioxidant Activity of Vitamin E and Related Phenols. Importance of Stereoelectronic Factors, J. Am. Chem. Soc., 102(26): 7791-7792 (1980).
[7] Wright J.S., Carpenter D.J., McKay D.J., Ingold K.U., Theoretical Calculation of Substituent Effects on the O−H Bond Strength of Phenolic Antioxidants Related to Vitamin E, J. Am. Chem. Soc., 119(18): 4245-4252 (1997).
[8] James S. Wright, Erin R. Johnson, and Gino A. DiLabio, Predicting the Activity of Phenolic Antioxidants:  Theoretical Method, Analysis of Substituent Effects, and Application to Major Families of Antioxidants, J. Am. Chem. Soc., 123(6): 1173–1183 (2001).
[9] Klein E., Lukeš V., Ilčin M., DFT/B3LYP Study of Tocopherols and Chromans Antioxidant Action Energetic, Chem. Phys. 336(1): 51–57 (2007).
[10] Dündar Y., Aslan R., "Hekimlikte Oksidatif Stres ve Antioksidanlar", Afyon Kocatepe Universitesi Yayınları, Afyon, (2000).
[11] Montgomery R., Conway T.W., Spector MD A.A., Chappell MD D., "Biochemistry A Case-Oriented Approach", 6th ed. Mosby-Year book, 5: 203-204 (1996).
[13] Sies H., Strategies of Antioxidant Defense, Euro. J. Biochem., 215(2): 213-219 (1993).
[14] Özeki T., Funakoshi K., Lwaki K., Rapid Induction of Chirrosis by Administration of Carbon Tetrachloride Plus Phospholipase D, Br. J. Exp. Pathol., 66(4): 385–390 (1985).
[15] Masaiki N., Yamada S., Orgata I., Ohta Y., Fujiwara K., Enhancement of Carbon Tetrachloride Induced Liver Injury by Glucagon and Insulin Treatment, Res. Exp. Med. 188(1): 27-33 (1988).
[16] Bayraktar N., Duygulu S.D., Taslipinar M.Y., Ucankus N.L., Omeroglu S., Gumuslu S., Kavutcu M., Canbolat, O., Investigation of the Effects of Stobadine on the Antioxidant Enzymes in Carbon Tetrachloride Mediated Brain Toxicity, Türk. Biyokimya. Dergisi., 36(4): 283-289 (2011).
[17] Freeman B.A., Crapo J.D., Biology of Disease: Free Radicals and Tissue Injury, Lab Invest., 47(5): 412-426 (1982).
[18] Le Page R.N., Cheeseman K.H., Osman N., Slater T.F., Lipid Peroxidation in Purified Plasma Membrane Fractions of Rat Liver in Relation to the Hepatoxicity of Carbon Tetrachloride, Cell. Biochem. Funct., 6(2): 87-99 (1988).
[19] Slater T.F., Cheeseman K.H., Ingold K.U., Carbon Tetrachloride Toxicity as a Model for Studying Free-Radical Mediated Liver Injury, Philos. Trans. R. Soc. Lond., B, Biol. Sci., 311(1152): 633-645 (1985).
[20] Comporti M., Lipid Peroxidation and Cell-Ular Damage in Toxic Liver Injury, Lab Invest., 53(6): 599-623 (1985).
[21] Sun F., Hamagawa E., Tsutsui C., Evalutaion of Oxidative Stres Durinh Apoptosis and Necrosis Caused by Carbon Tetrachloride in Rat Liver. Biochimica at Biophysica Acta, 1535(2): 186-191 (2001).
[23] Chamulitrat W. Mason R.P., Lipid Peroxyl Radical Intermediates in the Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenase, J. Biol. Chem., 264(35): 20968-20973 (1989).
[24] Marteau C., Favier D., Nardello-Rataj V., Aubry J-M., Dramatic Solvent Effect on the Synergy Between a-Tocopherol and BHT Antioxidants, Food Chem., 160: 190–195 (2014).
[25] Guerra M., Amorati R., Pedulli G.F., Water Effect on the O-H Dissociation Enthalpy of Para-Substituted Phenols: A DFT Study, J. Org. Chem., 69: 5460-5467 (2004).
[26] Martίnez A., Rodrίguez-Gironés M.A., Barbosa A., Costas M., Donator Acceptor Map for Carotenoids, Melatonin and Vitamins, J. Phys. Chem. A, 112: 9037–9042 (2008).
[27] Martίnez A., Barbosa A., Antiradical Power of Carotenoids and Vitamin E: Testing the Hydrogen Atom Transfer Mechanism, J. Phys. Chem. B, 112: 16945–16951 (2008).
[29] GaussView 03, Gaussian Inc., Pittsburg, PA 15106, USA.
[30] Frisch M.J. Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J., Gaussian 09, Gaussian, Inc.: Wallingford, CT (2016).
[32] Becke A.D., A New Mixing of Hartree-Fock and Local Density‐Functional Theories, J. Chem. Phys., 98(2): 1372 (1993).
[33] Fukui K., Fujimoto H., "Frontier Orbitals and Reaction Paths (Selected Papers of K. Fukui)" World Scientific Series in 20th Century Chemistry, vol. 7. Singapore: World Scientific (1997).
[34] Rauk A. "Orbital Interaction Theory of Organic Chemistry" 2nd ed. New York: Wiley-Interscience (2001).
[37] Wang Y.G., Barnes E.C., Kaya S., Sharma V., The Reactivity of Ambident Nucleophiles: Marcus Theory or Hard and Soft Acids and Bases Principle?, J. Comput. Chem., 40(31): 2761-2777 (2019).
[38] Zhan C.G., Nichols J.A., Dixon D.A., Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy:  Molecular Properties from Density Functional Theory Orbital Energies, J. Phys. Chem. A., 107(20): 4184–4195 (2003).
[39] Mebi C.A., DFT Study on Structure, Electronic Properties, and Reactivity of Cis-Isomers of [(NC5H4-S)2Fe(CO)2], J. Chem. Sci., 123(5): 727–731 (2011).
[40] جوانشیر، ز؛ مطالعه ساختار مولکولی و اثرهای حلال روی ترکیب­های منتول و کارواکرول، مطالعه نظری، نشریه شیمی و مهندسی شیمی، 39(3): 131-140 (1399).
[42] Fekri, M.H., Beyranvand A., Dashti Khavidaki H., Razavi Mehr M., Cycloaddition [2+2] Interaction of some Corticosteroid Drugs with C60 Nano Fullerene- A Theoretical Study, Int. J. Nano Dimens., 12(2): 156-163 (2021).
[43] Singh B., Singh R., Singh B., Kumar D., Computational Investigation of Structure and Reactivity of Methyl Hydrazinecarbodithioate, Iran. J. Chem. Chem. Eng., 37(2): 117-131 (2018).
[44] Kumar Pandey A., Narayan Mishra V., Singh V., Biological, Electronic, NLO, NBO, TDDFT and Vibrational Analysis of 1-benzyl-4-formyl-1H-pyrrole-3-carboxamide, Iran. J. Chem. Chem. Eng., 39(1): 233-242 (2020).
[45] Martínez A. Melendez-Martínez A.J., Lycopene, Oxidative Cleavage Derivatives, and Antiradical Activity, Comput. Theor. Chem., 1077: 92 (2016).
[46] Martínez A., Rodríguez-Gironés M.A., Barbosa A., Costas M., Donator Acceptor Map for Carotenoids, Melatonin and Vitamins, J. Phys. Chem. A, 112: 9037–9042 (2008).
[47] Monego D.L., da Rosa M.B., do Nascimento P.C., Applications of Computational Chemistry to the Study of the Antiradical Activity of Carotenoids: A Review, Food. Chem., 217: 37 (2017).
[51] Rung E., Gross E.K.U., Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett., 35(1): 442-444 (1984).
[52] Burke K., Werschnik J. Gross E.K.U. Time-Dependent Density Functional Theory: Past, Present, and Future, J. Chem. Phys., 123: 062206 (2005).
[55] Matta C.F., Boyd R.J., "An Introduction to the Quantum Theory of Atoms in Molecules", In: Matta C.F., Boyd R.J. (ed) "The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design", 1st edn. Wiley‐VCH Verlag GmbH & Co. KGaA, Chapter 1, (2007).
[56] AIM 2000, Version 2, www.aim2000.de. Bielefeld, Germany, (2002).
[57] Hafez S.M.N.A., Elbassuoni E., Abdelzaher W.Y., Welson N.N., Batiha G.El-S., Alzahrani K.J., Abdelbaky F.A.F., Efficacy of Vitamin E in Protection against Methotrexate Induced Placental Injury in Albino Rats, Biomed. Pharmacother., 139: 111637 (2021).