Synthesis and Characterization of Nanocomposite Films Consisting of TEMPO-Oxidized Nanocellulose / Graphene Oxide

Document Type : Research Article

Authors

1 Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad university, Tehran, I.R. IRAN

2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France

Abstract

In this study, films consisting of TEMPO-oxidized cellulose nanofibers (TOCNF) prepared from eucalyptus and graphene oxide (GO) were prepared by casting-evaporation method. The morphological structure, thermal stability and mechanical properties of the nanocomposite films were investigated by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and tensile mechanical tests. The results obtained from the X-ray diffraction spectrum, FTIR spectrum and SEM observations revealed that TOCNF and graphene oxide were able to form nanocomposite films with homogeneous structure in low-weight percent of graphene oxide. Compared with films of Tempo-oxidized cellulose nanofibers (TOCNF/GO0%), the mean tensile strength of nanocomposite films consisted of 1.5 wt% of graphene oxide (TOCNF/GO1.5%) increased to 19%, which was not statistically significant. In addition, the mean tensile strength of nanocomposite films consisted of 3wt% of graphene oxide (TOCNF/GO3%) decreased to 14.5%, which was not statistically significant. The results of TGA showed that the thermal degradation temperature of TOCNF/GO0.5%, TOCNF/GO1.5% and TOCNF/GO3% nanocomposite films compared to the film of TOCNF/GO0% slightly changed towards lower temperatures.

Keywords

Main Subjects


[1] Sellinger A., et al., Continuous Self-Assembly of Organic–Inorganic Nanocomposite Coatings That Mimic Nacre. Nature, 394(6690): 256-260 (1998).
[2] Klemm D., et al., Polysaccharides II: Polysaccarides from Eukaryotes. Biopolymers, 6:(Wiley-VCH Weinheim): 275-319 (2004).
[3] Turbak A.F., Snyder F.W., Sandberg K.R., Microfibrillated Cellulose, A New Cellulose Product: Properties, Uses, and Commercial Potential. Appl Polym Sci Appl Polym Symp. (1983).
[4] Lavoine N., et al., Microfibrillated Cellulose–Its Barrier Properties and Applications in Cellulosic Materials: A Review. Carbohydrate polymers, 90(2): 735-764 (2012).
[6] Hoeng F., Denneulin A., Bras J., Use of Nanocellulose in Printed Electronics: A Review. Nanoscale, 8(27): 13131-13154 (2016).
[7] Brodin F.W., Gregersen Ø.W., Syverud K., Cellulose Nanofibrils: Challenges and Possibilities as a Paper Additive or Coating Material–A Review. Nordic Pulp & Paper Research Journal, 29(1): 156-166 (2014).
[8] Bardet R., et al., Metod for Making Paper. WO 2014118466 (A1) (2014).
[9] Oksman K., et al., Review of the Recent Developments in Cellulose Nanocomposite Processing. Composites Part A: Applied Science and Manufacturing, 83: 2-18 (2016).
[10] Mariano M., El Kissi N., Dufresne A., Cellulose Nanocrystals and Related Nanocomposites: Review of Some Properties and Challenges. Journal of Polymer Science Part B: Polymer Physics, 52(12): 791-806 (2014).
[11] Jorfi M. Foster E.J., Recent Advances in Nanocellulose for Biomedical Applications. Journal of Applied Polymer Science, 132(14): (2015).
[12] Gontard N., Guilbert S., CUQ J.L., Water and Glycerol as Plasticizers Affect Mechanical and Water Vapor Barrier Properties of an Edible Wheat Gluten Film. Journal of food science, 58(1): 206-211 (1993).
[13] Hagenmaier R.D. Shaw P.E., Moisture Permeability of Edible Films Made with Fatty Acid and Hydroxypropyl Methyl Cellulose. Journal of Agricultural and Food Chemistry, 38(9): 1799-1803 (1990).
[14] Maftoonazad N., Ramaswamy H.S., Marcotte M., Shelf‐Life Extension of Peaches Through Sodium Alginate and Methyl Cellulose Edible Coatings. International journal of food science & technology, 43(6): 951-957 (2008).
[15] Park H.J., et al., Permeability and Mechanical Properties of Cellulose‐Based Edible Films. Journal of Food Science, 58(6): 136-1364 (1993).
[16] Yang L., Paulson A., Effects of Lipids on Mechanical and Moisture Barrier Properties of Edible Gellan Film. Food research international, 33(7): 571-578 (2000).
[21] Li D., et al., Processable Aqueous Dispersions of Graphene Nanosheets. Nature nanotechnology, 3(2): 101-105 (2008).
[22] Li R., Liu C., Ma J., Studies on the Properties of Graphene Oxide-Reinforced Starch Biocomposites. Carbohydrate Polymers, 84(1): 631-637 (2011).
[23] Salavagione H.J., Gomez M.A., Martinez G., Polymeric Modification of Graphene Through Esterification of Graphite Oxide and Poly (Vinyl Alcohol). Macromolecules, 42(17): 6331-6334 (2009).
[24] Steurer P., et al., Functionalized Graphenes and Thermoplastic Nanocomposites Based Upon Expanded Graphite Oxide. Macromolecular rapid communications, 30(45): 316-327 (2009).
[25] Wu X. Liu P., Facile Preparation and Characterization of Graphene Nanosheets/Polystyrene Composites. Macromolecular Research, 18(10): 1008-1012 (2010).
[27] Paredes J., et al., Graphene Oxide Dispersions in Organic Solvents. Langmuir, 24(19): 10560-10564 (2008).
[28] Fang M., et al., Covalent Polymer Functionalization of Graphene Nanosheets and Mechanical Properties of Composites. Journal of Materials Chemistry, 19(38): 7098-7105 (2009).
[29] Liang J., et al., Molecular‐Level Dispersion of Graphene Into Poly (Vinyl Alcohol) and Effective Reinforcement of Their Nanocomposites. Advanced Functional Materials, 19(14): 2297-2302 (2009).
[30] Villar-Rodil S., et al., Preparation of Graphene Dispersions and Graphene-Polymer Composites in Organic Media. Journal of Materials Chemistry, 19(22): 3591-3593 (2009).
[31] Rana V.K., et al., Synthesis and Drug‐Delivery Behavior of Chitosan‐Functionalized Graphene Oxide Hybrid Nanosheets. Macromolecular Materials and Engineering, 296(2): 131-140 (2011).
[32] Yang X., et al., Well-Dispersed Chitosan/Graphene Oxide Nanocomposites. ACS applied materials & interfaces, 2(6): 1707-1713 (2010).
[33] He Y., et al., Alginate/Graphene Oxide Fibers with Enhanced Mechanical Strength Prepared by Wet Spinning. Carbohydrate Polymers, 88(3): 1100-1108 (2012).
]38[ اسلامی، بهنام؛ احسانی نمین، پروین؛ قاسمی، اسماعیل؛ عزیزی، حامد؛ کرابی، محمد؛ بررسی جذب یون کادمیم ازمحلول آبی با استفاده از نانوکامپوزیت بر پایه کیتوزان/ نانو صفحه­های گرافن اصلاح شده با تری اتیل آمین، نشریه شیمی و مهندسی شیمی ایران، 36(2): 115 تا 125 (1396).
 [40] Saito T., et al., Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules, 8(8): 2485-2491 (2007).
[41] da Silva Perez D., Montanari S., Vignon M.R., TEMPO-Mediated Oxidation of Cellulose III. Biomacromolecules, 4(5): 1417-1425 (2003).
[42] Wang S.-F., et al., Preparation and Mechanical Properties of Chitosan/Carbon Nanotubes Composites. Biomacromolecules, 6(6): 3067-3072 (2005).
[43] Besbes I., S. Alila, and S. Boufi, Nanofibrillated Cellulose from TEMPO-Oxidized Eucalyptus Fibres: Effect of the Carboxyl Content. Carbohydrate Polymers, 84(3): 975-983 (2011).
[44] Besbes I., M.R. Vilar, and S. Boufi, Nanofibrillated Cellulose from Alfa, Eucalyptus and Pine Fibres: Preparation, Characteristics and Reinforcing Potential. Carbohydrate Polymers, 86(3): 1198-1206 (2011).
[45] Liao K.-H., et al., Aqueous Only Route Toward Graphene from Graphite Oxide. ACS nano, 5(2): 1253-1258 (2011).
[47] Luong N.D., et al., Graphene/Cellulose Nanocomposite Paper with High Electrical and Mechanical Performances. Journal of Materials Chemistry, 21(36): 13991-13998 (2011).