A Molecular Study of the Henry’s Law Constant for Carbon Dioxide in Pure Solvents

Document Type : Research Article

Authors

Institute of Petroleum Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, I.R. IRAN

Abstract

Acid gases removal such as carbon dioxide from gas streams is a major problem in industrial. The existence of this gas causes to different problems. The aim of this work is to find solvents that have more performance for CO2 absorption. Henry’s law constant of CO2 in some solvents have been calculated by using a model that is constructed from Quantities Structure-Property Relationship (QSPR) method. Firstly, solvent molecules are optimized based on Density Functional Theory (DFT) method at the level of B3LYP and 6-11 ++ G (d,p) basis set in Gaussian software and then molecular descriptors are calculated by Dragon. The capability of the model with two simple molecular descriptors including a number of hydroxyl functional group (n-ROH) and Balaban centric index (BAC) is examined by Leave-One-Out Cross Validation (LOO-CV) method.The coefficient of determination (R[2) value and Average Relative Deviation percent (ARD%) for this model are 0.95 and less than 7%, respectively. Results show high accuracy of the model and good agreement with experimental values in literature.

Keywords

Main Subjects


[1] Bohloul, M.R., Vatani, A., Peyghambarzadeh, S.M., Experimental and Theoretical Study of CO2 Solubility in N-Methyl-2-Pyrrolidone (NMP), Fluid Phase Equilibr, 365: 106-111 (2014).
[2] Intergovernmental Panel on Climate Change, “Carbon Dioxide Capture and Storage”, United Nations, 1st Edition, (2006).
[3] Gui X., Tang Z.G., Fei W., CO2 Capture with Physical Solvent Dimethyl Carbonate at High Pressures, J. Chem. Eng. Data, 55: 3736–3741 (2010).
[4] Sandler S. I., “Chemical and Engineering Thermodynamics”, (3rd ed.), New York: Wiley, (1999).
[5] Gui X., Tang Z.G., Fei W., Solubility of CO2 in Alcohols, Glycols, Ethers, and Ketones at High Pressures from 288.15 to 318.15 K, J. Chem. Eng. Data, 56: 2420–2429 (2011).
[6] Altschuh J., Bruggemann R.,  Santl H., Eichinger G., Piringer O.G., Henry’s Law Constant for a Diverse Set of Organic Chemicals: Experimental Determination and Comparison of Estimation Methods, Chemosphere, 39(11): 1871-1887 (1999).
[9] Jou F.Y., Desmukh R.D., Otto F.D.,  Mather A.E., Vapor–Liquid Equilibria for Acid Gases and Lower Alkanes in Triethylene Glycol, Fluid Phase Equilibr, 36: 121-140 (1987).
[10] Lotfollahi, M.N., Baseri, H., Haghighi Asl A., High Pressure Phase Equilibrium of (Solvent + Salt + CO2) Systems by the Extended Peng-Robinson Equation of State, Iran. J. Chem. Chem. Eng. (IJCCE), 27(4): 97-105 (2008).
[11] Uyan M., Sieder G., Ingram Th.,  Held Ch., Predicting CO2 Solubility in Aqueous N-methyldiethanolamine Solutions with ePC-SAFT, Fluid Phase Equilibr, 393: 91-100 (2015).
[12] سید حمید حسینی، امیرعباس ایزدپناه، حسین رهیده، مدل سازی ترمودینامیکی حلالیت کربن دی اکسید در محلول آبی متیل دی اتانول آمین با استفاده از معادله حالت مکعبی به اضافه تجمعی  (CPA)،نشریه شیمی و مهندسی شیمی ایران، (4)34: 45 تا 57 (1394).
[13] Goharrokhi M., Taghikhani V., Ghotbi S., Safekordi A.A., Najibi H., Correlation and Prediction of Solubility of CO2 in Amine Aqueous Solutions, Iran. J. Chem. Chem. Eng. (IJCCE), 29(1): 111-124 (2010).
[14] Rayer A.V., Henni A., Tontiwachwuthikul P., High Pressure Physical Solubility of Carbon Dioxide (CO2) in Mixed Polyethylene Glycol Dimethyl Ethers (Genosorb 1753), Can. J. Chem. Eng., 90(3): 576-583 (2012).
[15] Hansch C., Leo A., Exploring QSAR. “Fundamentals and Applications in Chemistry and Biology”, ACS, Washington, D.C., (1995).
[16] Todeschini R., Consonni V., “Molecular Descriptors for Chemoinformatics”, 2nd ed., Wiley-VCH, Weinheim, (2009).
[17] Momeni M., Riahi S., Prediction of Amines Capacity for Carbon Dioxide Absorption in Gas Sweetening Processes, J. Nat. Gas. Sci. and Eng., 21: 442-450 (2014).
[18]  Henni A., Tontiwachwuthikul P., Chakma A., Solubilities of Carbon Dioxide in Polyethylene Glycol Ethers, Can. j. Chem. Eng., 83: 358-361 (2005).
[20] Frisch, Michael J., Nielsen, Alice B., Frisch, Aeleen (Eds.), “Gaussian 98”, Gaussian Incorporated, 1998.
[22] Michalewicz, Z., “Genetic Algorithms + Data Structures = Evolution Programs”, 3rd ed., Berlin: Springer-Verlag, (1998).
[23] Jolliffe I.T., “Principal Component Analysis”, Springer-Verlag, New York, (1986).
[24] Todeschini R., Consonni V., “Handbook of Molecular Descriptors”, Wiley VCH Verlag GmbH, 11, (2000).
[25] Balaban, A.T., XXXIV. Five New Topological Indices for the Branching of Tree-Like Graphs, Theor. Chim. Acta, 53: 355-375 (1979).
[26] A. Golbraikh A., Tropsha A., Beware of q2!, J. Mol. Graph. Model., 20(4): 269-276 (2002).
[27] Netzeva T.I., Worth A.P., Aldenberg T., Benigni R., Cronin M.T.,  Gramatica P., Yang C., Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure – Activity Relationships, ATLA, 33: 155-173 (2005).
[28] Gramatica P., Principles of QSAR Models Validation: Internal and External, QSAR Comb. Sci., 26(5): 694–701 (2007).
[29] Xu Y., Schutte R.P., Hepler L.G., Solubilities of Carbon Dioxide, Hydrogen Sulfide and Sulfur Dioxide in Physical Solvents, Can. J. Chem. Eng., 70 (1992).
[30] Singh P., Niederer J. PM., Versteeg G.F., Structure and Ativity Relationships for Amine Based CO2 absorbents—I, Int. J. Greenh. Gas. Con., 5-10 (2007).
[31] Singh P., Niederer J. PM, Versteeg G.F., Structure and activity Relationships for Amine Based CO2 Absorbents-II, Chem. Eng. Res. Des., 87: 135-144 (2009).