Numerical Study of the Influence of Geometric Factors on Heat Transfer Using Water-Al2O3 Nanofluid in the Microchannels

Document Type : Research Article


Department of Chemical Engineering, Yasouj University, Yasouj, I.R. IRAN


In this study, the heat transfer and fluid flow, water-Al2O3nanofluid in a microchannel, two-dimensional rectangular in volume fractions 2%, 4%, 6% and 8% nanoparticles and Reynolds number from 10 to 50 using Computational Fluid Dynamics (CFD) has been investigated. The governing equations of continuity and momentum and thermal are solved by finite element method and by applying boundary conditions by using COMSOL Multiphysics 5.0 software. Simulation results have shown, the local Nusselt number water-Al2O3nanofluid in Reynolds number 6.9 and volume fractions 5% is a good agreement with experimental data. Increasing the Reynolds number leads to increases fluid velocity and increase the density of streamlines in the edge of the baffle and the creation of larger vortex flow that increases the heat transfer coefficient. By increasing the number of baffles leads to the formation of the recirculation zone, which increased outlet temperatures due to better heat exchange fluid to the walls of the microchannel. So that the output of fluid temperature in Reynolds number 40 in the microchannel six baffle and in the microchannel one baffle is 322.35 K and 314.9 K, respectively. By increasing the height of baffle, increase recirculation zone and then increase the heat transfer coefficient. In six baffle microchannel for Reynolds number 50, the value of pressure drop and the nusselt number is found to be 15 and 28 higher when compared with that Reynolds number in 10, respectively. But also the average output temperature is increased by increasing nanoparticle volume fractions and viscosity affected by size zone. For one baffle microchannel by rising nanoparticle volume fractions from 0.02 to 0.1, the temperature (K) enhancing 0.56 % percent. But the effect of the distance between the baffles, the average temperature of the microchannel output is low.


Main Subjects

[1] Sudarsan A.P., “Multivortex Micromixing: Novel Techniques Using Dean Flows for Passive Microfluidic Mixing”, PhD Dissertation, Texas A&M University, (2006).
[2] Ansari M.A, Kim K.Y., Anwar K., Kim S.M., A Novel Passive Micromixer Based on Unbalanced Splits and Collisions of Fluid StreamsJ Micromechanics Microengineering20(5):55007 (2010).
[3] Sohel M.R., Saidur R., Sabri M.F.M., Kamalisarvestani M., Elias M.M., Ijam A., Investigating the Heat Transfer Performance and Thermophysical Properties of Nanofluids in a Circular Micro-ChannelInt Commun Heat Mass Transf42:75-81 (2013).
[4] Kim S.-M., Mudawar I., Review of Databases and Predictive Methods for Heat Transfer in Condensing and Boiling Mini/Micro-Channel FlowsInt. J. Heat. Mass. Transf.77:627–52 (2014).
[5] Dehghan M., Mahmoudi Y., Valipour M.S., Saedodin S., Combined Conduction–Convection–Radiation Heat Transfer of Slip Flow Inside a Micro-Channel Filled with a Porous MaterialTransp. Porous Media108(2):413–36 (2015).
[7] Gamrat G., Favre-Marinet M., Asendrych D., Conduction and Entrance Effects on Laminar Liquid Flow and Heat Transfer in Rectangular MicrochannelsInt. J. Heat Mass Transf.48(14):2943–54 (2005).
[9] Colgan E.G., Furman B., Gaynes M., Graham W.S., LaBianca N.C., Magerlein J.H., Polastre R.J., Rothwell M.B., Bezama R.J., Choudhary R., Marston K.C., Toy H., Wakil J., Aziz J.A., Schmidt R.R.., A Practical Implementation of Silicon Microchannel Coolers for High Power ChipsIEEE Transactions on Components and Packaging Technologies, 30(2): 218-225 (2007).
[10] Lee J., Mudawar I., Low-Temperature Two-Phase Microchannel Cooling for High-Heat-Flux Thermal Management of Defense ElectronicsComponents Packag Technol. IEEE Trans.32(2):453–65 (2009).
[11] Solovitz S.A., Stevanovic L.D., Beaupre R.A. Micro-Channel Thermal Management of High Power DevicesAppl Power Electron Conf. Expo. 2006 APEC ’06 Twenty-First Annu. IEEE”, 7 pp. (2006).
[12] Tuckerman D.B., Pease R.F.W., High-Performance Heat Sinking for VLSI, Electron Device Lett. IEEE2(5):126–9 (1981).
[13] Lee P.-S., Garimella S. V, Liu D., Investigation of Heat Transfer in Rectangular Microchannels, Int. J. Heat Mass. Transf., 48(9):1688–704 (2005).
[14] Qu W., Mala G.M., Li D., Heat Transfer for Water Flow in Trapezoidal Silicon MicrochannelsInt. J. Heat Mass Transf.43(21):3925–36 (2000).
[15] Qu W., Mudawar I. Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat SinkInt. J. Heat Mass Transf.45(12):2549–65 (2002).
[16] Lelea D., Nishio S., Takano K. The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled WaterInt. J. Heat Mass Transf.47(12):2817–30 (2004).
[17] Naphon P., Khonseur O. Study on the Convective Heat Transfer and Pressure Drop in the Micro-Channel Heat SinkInt. Commun. Heat Mass Transf.36(1):39–44 (2009).
[18] Akbarinia A., Behzadmehr A. Numerical study of Laminar Mixed Convection of a Nanofluid in Horizontal Curved TubesAppl. Therm. Eng.27(8–9):1327–37 (2007).
[20] Pak B.C., Cho Y.I. Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron metallic Oxide ParticlesExp. Heat Transf.11(2):151–70 (1998).
[21] Xuan Y., Li Q. Investigation on Convective Heat Transfer and Flow Features of Nanofluids, J. Heat Transfer., 125(1): 151–5 (2003).
[22] نوعی؛ سید حسن، حریری دیبا؛ فرزانه، نوعی؛ سید مصطفی، حسینقلی­زاده؛ نجمه، زینالی هریس؛ سعید، بررسی تجربی و عملکرد نانو سیال مس اکسید ـ استون بر بازده گرمایی یک ترمو سیفون دو فازی بسته، نشریه شیمی و مهندسی شیمی ایران، (3)32: 31 الی 38 (1392).
[23] Murshed S.M.S., Leong K.C., Yang C., Thermophysical and Eectrokinetic Properties of Nanofluids - A Critical ReviewAppl. Therm. Eng.28(17–18):2109-25 (2008).
[25] Nguyen C.T., Desgranges F., Galanis N., Roy G., Maré T., Boucher S., Angue Mintsa H., Viscosity Data for Al2O3–Water Nanofluid—Hysteresis: is Heat Transfer Enhancement Using Nanofluids Reliable?Int. J. Therm. Sci.47(2):103–11 (2008).
[26] Hsieh C.Y., Yang A.S., Mixing Enhancement of a Passive Micromixer by Applying Boundary Protrusion Structures, Adv. Mater. Res.74:77–80 (2009).
[27] Wu N.-T.N., Z. Micromixers—A Review., J. Micromechanics Microengineering15(2):R1 (2005).
[29] Sheikholeslami M., Gorji-Bandpy M., Ganji D.D., Numerical Investigation of MHD Effects on Al2O3–Water Nanofluid Flow and Heat Transfer in a Semi-Annulus Enclosure Using LBMEnergy60:501–10 (2013).
[32] Chabi A.R., Zarrinabadi S., Peyghambarzadeh S.M., Hashemabadi S.H., Salimi M., Local Convective Heat Transfer Coefficient and Friction Factor of CuO/Water Nanofluid in a Microchannel Heat SinkHeat Mass Transf., 1–11 (2016).
[33] Jang S.P., Choi S.U.S., Cooling Performance of a Microchannel Heat Sink with NanofluidsAppl. Therm. Eng.26(17–18):2457–63 (2006).
[34] Chein R., Huang G. Analysis of Microchannel Heat Sink Performance Using NanofluidsAppl. Therm. Eng., 25(17–18):3104–14 (2005).
[35] Li J., Kleinstreuer C., Thermal Performance of Nanofluid Flow in MicrochannelsInt. J. Heat Fluid Flow29(4):1221–32 (2008).
[36] Ahn S.W., The Effects of Roughness Types on Friction Factors and Heat Transfer in Roughened Rectangular DuctInt. Commun. Heat Mass Transf.28(7):933–42 (2001).
[37] Chung C.K., Wu C.-Y., Shih T.R., Wu C.F., Wu B.H., Design and Simulation of a Novel Micro-Mixer with Baffles and Side-Wall Injection into the Main Channel, “Nano/Micro Eng. Mol. Syst. 2006 NEMS ’06 1st IEEE Int. Conf.”, 721–4 (2006).
[38] ZareNezhad B., Sabzemeidani M.M., Predicting the Effect of Cell Geometry and Fluid Velocity on Pem Fuel Cell Performance by CFD SimulationJ. Chem. Technol. Metall50(2):176–82 (2015).
[39] Maı̈ga S.E.B., Nguyen C.T., Galanis N., Roy G., Heat Transfer Behaviours of Nanofluids in a Uniformly Heated TubeSuperlattices Microstruct35(3–6):543–57 (2004).
[40] Chon C.H., Kihm K.D., Lee S.P., Choi S.U.S., Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity EnhancementAppl. Phys. Lett.87(15):(2005).
[41] Akbarinia A., Abdolzadeh M., Laur R. Critical Investigation of Heat Transfer Enhancement Using Nanofluids in Microchannels with Slip and Non-Slip Flow Regimes Appl. Therm. Eng.31(4):556–65 (2011).