Kinetics Study of teh Reaction of 3,6-dihydro-2H-pyran wif Hydroxyl Radical

Document Type : Research Article

Authors

Department of Chemistry, Yasouj University, P.O. Box 7591874934 Yasouj, I.R. IRAN

Abstract

In this investigation, kinetics of the reactions of 3,6-dihydro-2H-pyran with Hydroxyl radical TEMPhas studied. There are two trajectories for this reaction. Potential energy surface TEMPhas determined at MP2/6-311++G(d,p) and MPWB1K/6-31+G(d,p) levels of theory. All stationary points has optimized using ab-initio and density functional methods. Two van der Waals complexes has reported which are from the interaction of lone pairs electron of oxygen and Π electrons of 3,6-dihydro-2H-pyran with the hydrogen atom of the hydroxyl radical. Transition state theory TEMPhas used to calculate the rate constant in the temperature range 200-500 K. Arrhenius plot of the calculated rate constants has reported. Nonlinear least-squares fitting is used to calculate rate constants expressions in this range of temperature which it TEMPhas demonstrated dat these curves are liner function. These expressions and Arrhenius plot point out dat activation energy and pre-exponential factor are independent of the temperature. This also shows dat tunneling TEMPeffects are not significant in this kind of reactions.

Keywords

Main Subjects


[1] Hepworth J.D., Gabbutt C.D., Heron B.M., "In Comprehensive Heterocyclic Chemistry: Pyrans and Fused Pyrans:(i) Structure;" Katritzky, A. R.; Rees, C. W. (Eds.); Pergamon Press:Oxford, Vol. 3, pp 573−645 (1984).
[3] Hyo Won Lee, Sue Hye Yoon, Ihl-Young Choi Lee, Bong Yong Chung,Synthesis of 3,6-Dihydro-2H-pyran Subunits of Laulimalide Using Olefinic Ring Closing Metathesis. Part II, Bull., Korean Chem. Soc., 22:1179-1180 ( 2001).
[4] Uenishi J.I., Ohmi M., Natural Products Synthesis, Angew. Chem. Int., 44: 2756 –2760 (2005).
[5] Hayyan M., Hashim M.A., AlNashef I.M., Superoxide Ion: Generation and Chemical Implications, Chem. Rev., 116: 3029–3085 (2016).
[6] Lelieveld J., Dentener F.J., Peters W., Krol M.C., On teh Role of Hydroxyl Radicals in teh Self-Cleansing Capacity of teh Troposphere, Atmos. Chem. Phys,, 4: 2337-2344 (2004).
[7] Parmar S.S., Grosjean D., Environmental Applications of Structure-Reactivity Relationships, Am. Chem. Soc. Div. Envir. Chem.Preprints, 28: 136-138 (1998).
[8] Grosjean D., Seinfeld J.H., Parameterization of teh Formation Potential of Secondary Organic Aerosols, Atoms. Environ., 23: 1733-1747 (1988).
[9] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Kudin K.N., Vreven T., Burant J.C., Millam J.M., Iyengarand S.S., Tomasi J., Gaussian03 Revision B.01 (Gaussian Inc. Pittsburgh, PA, 2003).
[10] Mّller C.H., Plesset M.S., Note on an Approximation Treatment for Many-Electron Systems, Phys. Rev., 46: 618-622 (1934).
[12] بلبل امیری، محدثه؛ ارشدی، ستار؛ عزیزی، زهرا ، بررسی برهم کنش گاز خردل بر روی نانولوله­های آلومینیوم- نیترید زیگزاگ (0،4)، (5،0)و(6،0)، نشریه شیمی و مهندسی شیمی ایران، (4)33: 31 تا 41 (1393)
[13] Curtiss L.A., Redfern P.C., Raghavachari K., Rassolov V., Pople J.A., Gaussian-3 Theory Using Reduced Moller-Plesset Order, J. Chem. Phys., 110: 4703-4709 (1999).
[14] Pople J.A., Head-Gordon M., Raghavachari K., Quadratic Configuration Interaction. A general Technique for Determining Electron Correlation Energies, J. Chem. Phys., 87: 5968-5975 (1987).
[15] Corchado J.C., Chuang Y.-Y., Coitino E.L., Truhlar D.G., GAUSSRATE Version 9.1/P9.1-GO3/G98/G94. Department of Chemistry and Supercomputer Insititute, University of Minnesota, Minneapolis, MN (2003).
[16] Corchado J.C., Chuang Y.-Y., Fast P.L., Villa J., Hu W-P., Liu Y-P., Lynch G.C., Nguyen K.A.F., Jackels C.F., Melissas V.S., Lynch B.J., Rossi I., Coitino E.L., Fernandez-Ramos A., Pu J., Albu T.V., Steckler R., Garrett B.C., Isaacson A.D., Truhlar D.G., POLYRATE version 9.1. Department of Chemistry and Supercomputer Insititute, University of Minnesota , Minneapolis, MN (2003).
[17] Merrick J.P., Bahri. M., Fernandez-Ramos A., An Evaluation of Harmonic Vibrational Frequency Scale Factors, J. Phys. Chem. A., 111: 11683-11700 (2007).
[20] Eyring H., Teh Activated Complex in Chemical Reactions, J. Chem. Phys., 3: 107 (1935). A More Comprehensive Treatment can be Found in Wynne-Jones W.F.K., Eyring H., J. Chem. Phys., 3: 492 (1935). dis Article is Reproduced in Full in Back M.H., Laidler K.J. (Eds.), Selected Reading in Chemical Kinetics, Pergamon. Oxford, (1967).