Synthesis of Nanostructured Molybdenum Trioxide by Thermal Decomposition Method in the Presence of Stearic Acid

Document Type : Research Article

Authors

Faculty of Chemistry, Kharazmi University, Tehran, I.R. IRAN

Abstract

In this research, pure nanostructured molybdenum trioxide (MoO3) was prepared by thermal decomposition of bisacetylacetonatodioxo molybdenum (VI), MoO2(acac)2, precursor in the presence of stearic acid. ‍Characterization of the resulted nanostructure was performed with different physicochemical methods such as Fourier Transform InfraRed (FT-IR) spectroscopy,UV-Vis absorption spectroscopy, X-Ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). X-ray diffraction pattern confirms high purity and crystallinity of α-MoO3 with orthorhombic crystal phase. Scanning electron microscopy and transmission electron microscopy show short nanorod morphology with a thickness of 50-80 nm. Furthermore, the band gap of MoO3 nanostructure was calculated about 3.65 eV from UV–Vis absorption spectroscopy. An appropriate crystal growth mechanism was also proposed based on the X-ray diffraction analysis.

Keywords

Main Subjects


[1] Fu Y., Zhu H., Schrader A.W., Liang D., Ding Q., Joshi P., Hwang L., Zhu X.Y, Jin S., Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability, Nano Lett.,16, 1000–1008 (2016).
[2] صفائی، م.؛ روش تهیه، مکانیسم رشد و کاربرد نانولوله های تیتانیا/تیتاناتی، نشریه شیمی و مهندسی شیمی ایران، 34: 1 تا 22 (1394).
با استفاده از رنگ‌دانه‌های سیانیدین توت‌سیاه به‌روش سل ـ ژل، نشریه شیمی و مهندسی شیمی ایران، 35: 1 تا 8 (1395).
[4] Pan Z.W., Dai Z.R., Wang Z.L., Nanobelts of Semiconducting Oxides, Science, 291: 1947-1949 (2001).
[5] Ahire D.V., Shinde S.D., Patil G.E., Thakur K.K., Gaikwad V.B., Wagh V.G., Jain G.H., Preparation of MoO3 Thin Films by Spray Pyrolysis and its Gas Sensing Performance, Int. J. Smart Sense. Intelligent Syst., 5: 592-605 (2012).
[6] Arulraj A., Goutenoire F., Tabellout M., Bohnke O., Lacorre P., Synthesis and Characterization of the Anionic Conductor System La2Mo2O9-0.5xFx (x = 0.02−0.30), Chem. Mater., 14: 2492-2498 (2002).
[7] Li W., Cheng F., Tao Z., Chen J., Vapor-Transportation Preparation and Reversible Lithium Intercalation/Deintercalation of α-MoO3 Microrods, J. Phys. Chem. B, 110: 119-124 (2006).
[8] Adelifard M., Jahandoost M., Impact of Sulfur Concentration on Morphological, Optical, Electrical and Thermoelectrical Properties of Nanostructured MoO3 Thin Films, Journal of Materials Science: Materials in Electronics, 27, 5427–5433 (2016).
[9] Sunu S.S., Prabhu E., Jayaraman V., Guanasekar K.J., Seshariji T.K., Guanasekaran T., Electrical Conductivity and Gas Sensing Properties of MoO3, Sens. Actuators B, 101: 161–174, (2004).
[11] Wang J.Y., Shan Y., Guo H., Li B., Wang W., Jia J., Friction and Wear Characteristics of Hot-Pressed NiCr–Mo/MoO3/Ag Self-Lubrication Composites at Elevated Temperatures up to 900 °C, Tribology Letters, 48: 1-16 (2015).
[12] Somani P.R., Radhakrishnan S., Electrochromic Materials and Devices: Present and Future, Mater. Chem. Phys.77: 117-133 (2002).
[13] Yao D.D, Rani R.A., O’Mullane A.P, Kalantar-zadeh K., Ou J.Z., Enhanced Coloration Efficiency for Electrochromic Devices Based on Anodized Nb2O5/Electrodeposited MoO3 Binary Systems, J. Phys. Chem. C, 118: 10867–10873 (2014).
[15] Bach U., Corr D., Lupo D., Pichot F., Ryan M., Nanomaterials-Based Electrochromics for Paper-Quality Displays, Adv. Mater., 14: 845-848 (2002).
[17] Michailovski A., Grunwaldt J.D., Baiker A., Kiebach R., Bensch W., Patzke G.R., Studying the Solvothermal Formation of MoO3 Fibers by Complementary In Situ EXAFS/EDXRD Techniques, Angew. Chem. Int. Ed. 44:5643-5647 (2005).
[18] Wei X.M., Zeng H.C, Large-Scale Organizations of MoO3Nanoplatelets with Single-Crystalline MoO3(4,4‘-bipyridyl)0.5, J. Phys. Chem. B, 107: 2619-2622 (2003).
[19] Li X.L., Liu J.F., Li Y.D., Low-Temperature Synthesis of Large-Scale Single-Crystal Molybdenum Trioxide (MoO3) Nanobelts, Appl. Phys. Lett. 81:4832-4834 (2002).
[20] Xia T., Li Q., Liu X., Meng J., Cao X., Morphology-Controllable Synthesis and Characterization of Single-Crystal Molybdenum Trioxide, J. Phys. Chem. B, 110: 2006-2012 (2006).
[22] Yan M.Y., Shen Y., Zhao L., Li Z., Synthesis and Photochromic Properties of EDTA-Induced MoO3 Powder, Mater. Res. Bull. 46: 1648-1653 (2011).
[23] Phuruangra tA., Chen J.S., Lou X.W., Yayapao O., Thongtem S., Thongtem T., Hydrothermal Synthesis and Electrochemical Properties of α-MoO3 Nanobelts Used as Cathode Materials for Li-Ion Batteries, Appl. Phys A.,107: 249–254 (2012).
[24] Salavati-Niasari M., Davar F., Mazaheri M., Synthesis of Mn3O4 Nanoparticles by Thermal Decomposition of a [bis(salicylidiminato)manganese(II)]Complex, Polyhedron, 27: 3467–3471 (2008).
[25] Salavati-Niasari M.,  Fereshteh Z., Davar F., Synthesis of Cobalt Nanoparticles from [bis(2-hydroxyacetophenato)cobalt(II)] by Thermal Decomposition, Polyhedron, 28: 1065-1068 (2009).
[26] احمدپور، سجاد؛ عالمی، عبدالعلی؛ خادمی نیا، شاهین؛ تهیه و شناسایی بلورهای کادمیم اکسید ناخالص شده با عناصر لانتانیدی گادولینیوم(Gd3+)  و لوتتیوم (Lu3+) به روش سل-ژل، نشریه شیمی و مهندسی شیمی ایران، (1) 33: 1 تا 8 (1393).
[27] خانی، وجیهه؛ شریفی، لیلا؛ پیامی، آرش؛ کوهانی، حسین؛ میرحسینی، سیدحسین، تهیه نانوپودر روی اکسید به روش سوختن ژل و استفاده از آن در ساخت پوششهای مقاوم به خوردگی کامپوزیتی پلیمر/ روی اکسید، نشریه شیمی و مهندسی شیمی ایران، (2) 34: 1 تا 11 (1394).
[28] Yu. Posudievsky O., Biskulova S.A., Pokhodenko V.D., New Polyaniline–MoO3 Nanocomposite as a Result of Direct Polymer Intercalation, J. Mater. Chem. 12: 1446-1449 (2002).
[29] Subba-Reddy C.V., Qi Y.Y., Jin W., Zhu Q.Y., Deng Z.R., Chen W., Mho S.I., An Electrochemical Investigation on (MoO3+PVP+PVA) Nanobelts for Lithium Batteries, J. Solid State Electrochem.,11: 1239-1243 (2007).
[31] Subba-Reddy C.V., Walker Jr. E.H., Wen C., Mho S., Hydrothermal Synthesis of MoO3 Nanobelts Utilizing Poly(ethylene glycol), J. Power Sources, 183: 330–333 (2008).
[32] Klinbumrung A., Thongtem T.,Thongtem S., Characterization of Orthorhombic α-MoO3 Microplates Produced by a Microwave Plasma Process, J. Nanomaterials, 1-5 (2012).
[33] Tauc J., Optical Properties and Electronic Structure of Amorphous Ge and Si, Mater. Res. Bull., 3: 37–46 (1968).
[34] Mordike B.L., Ebert T., Magnesium: Properties-Applications-Potential, Mater. Sci. Eng. A, 302: 37–45 (2001).
[35] Zhao Y, Liu J, Zhou Y, Zhang Z, Xu Y, Naramoto H and Yamamoto S, Preparation of MoO3 Nanostructures and Their Opticalproperties, J. Phys.: Condens. Matter, 15: L547–L552 (2003).