Modeling and Simulation of Gas Separation Membrane Processes Using Modified Operation Line Method

Document Type : Research Article

Authors

1 Faculty of Chemical Engineering, Urmia University of Technology, Urmia, I.R. IRAN

2 Department of Chemical Engineering, Urmia University, Faculty of Engineering, Urmia, I.R. IRAN

Abstract

In this work, the Modified Operation Line Method (MOLM) was used for modeling and simulation of the gas separation membrane process due to its simplicity and well compatibility with exact solution methods. This method reliability was verified by comparing the obtained results with the literature for both organic and inorganic membranes. Then, the verified model was applied to calculate the surface area of the membrane separation process, as a case study, for the separationof butane isomers produced in LPG unit of Tabriz refinery. The results showed that the MOLM method
is not efficient for countercurrent flow pattern. But, this method can predict the required membrane area for cocurrent flow pattern accurately. Modeling results showed that high purity products can't be obtained using a single stage membrane. For this purpose, a processes design
was performed to achieve products with a purity higher than 98% of normal and isobutane produced in LPG unit of Tabriz refinery by multistage membrane cascade using MOLM method and required membrane area was calculated to equal to 2910 m2. Also, the effects of the key parameters such as selectivity and ratio of feed pressure to permeate pressure on the membrane surface area were evaluated. and ratio of feed pressure to permeate pressure on the membrane surface area were evaluated.

Keywords

Main Subjects


[1] Baker, Richard W, "Membrane Technology and Applications", 2nd ed., John Wiley and Sons, Inc. ISBN : 0-470-85445-6 (2004).
[2] Rahmanian B., Pakizeh M., Mansoori S.A.A., Abedini R., Application of Experimental Design Approach and Artificial Neural Network (ANN) for the Determination of Potential Micellar-Enhanced Ultrafiltration Process, Journal of Hazardous Materials, 187(1): 67-74 (2011).
[3] Weller S., Steiner W.A., Separation of Gases by Fractional Permeation Through Membranes, Journal of Applied Physics, 21: 279-283 (1950).
[4] Razmjoo A., Babaluo A.A., Simulation of Binary Gas Separation in Nanometric Tubular Ceramic Membranes by a New Combinational Approach, Journal of Membrane Science, 282(1): 178-188 (2006).
[5] Shindo, Y., Hakuta T., Yoshitome H., Inoue H., Calculation Methods for Multicomponent Gas Separation by Permeation, Separation Science and Technology, 20(5-6): 445-459 (1985).
[6] Aghaeinejad‐Meybodi A., Ghasemzadeh K., Babaluo A.A., Morrone P., Basile A., Modeling Study of Silica Membrane Performance for Hydrogen Separation,  AsiaPacific Journal of Chemical Engineering, 10(5): 781-790 (2015).
[7] غلامزاده، محمد ابراهیم؛ کارگری، علی؛ ذکایی آشتیانی، علی، مدلسازی و حل تقریبی جداسازی نیتروژن و متان در یک مدول غشایی پیچشی، نشریه شیمی و مهندسی شیمی ایران، (1)53: 57 تا 69 (1395).
[8] Ghasemzadeh K., Zeynali R., Basile A., Theoretical Study of Hydrogen Production Using Inorganic Membrane Reactors During WGS Reaction, International Journal of Hydrogen Energy, 41(20): 8696-8705 (2016).
[9] Ghasemzadeh K., Morrone P.,  Babalou A.A.,  Basile A.,  A Simulation Study on Methanol Steam Reforming in the Silica Membrane Reactor for Hydrogen Production, International Journal of Hydrogen Energy, 40(10): 3909-3918 (2015).
[10] Ghasemzadeh K., Morrone P., Liguori S., Babaluo A.A., Basile A., Evaluation of Silica Membrane Reactor Performance for Hydrogen Production via Methanol Steam Reforming: Modeling Study, International Journal of Hydrogen Energy, 38(36):16698-16709 (2013).
[11] Ghasemzadeh K., Morrone P., Iulianelli A., Liguori S., Babaluo A.A., Basile A., H2 Production in Silica Membrane Reactor via Methanol Steam Reforming: Modeling and HAZOP AnalysisInternational Journal of Hydrogen Energy38(25): 10315-10326 (2013).
[12] Ghasemzadeh K., Liguori S., Morrone P., Iulianelli A., Piemonte V., Babaluo A.A., Basile A., H2 Production by Low Pressure Methanol Steam Reforming in a Dense Pd–Ag Membrane Reactor in co-Current Flow Configuration: Experimental and Modeling Analysis, International Journal of Hydrogen Energy, 38(36): 16685-16697 (2013).
[13] وافری، بهزاد؛ کرمی، حمیدرضا؛ کریمی، غلامرضا، مدلسازی فرآیند ریفرمینگ گاز طبیعی با بخار آب در رآکتور غشایی پالادیم- نقره برای تولید هیدروژن، نشریه شیمی و مهندسی شیمی ایران، (3)30: 25 تا 37 (1390).
[14] Huang Du-shu., Yi Zhong-zhou., Huang Zhao-long., Yi Ping., Li Zi-jing., Liu Wei., Mass Transfer Mechanism and Mathematical Model for Extraction Process of l-Theanine Across Bulk Liquid Membrane, Iran. J. Chem. Chem. Eng (IJCCE), 31(2): 53-58 (2012).
[15] Ghasemzadeh K., Andalib E., Basile A., Evaluation of Dense Pd–Ag Membrane Reactor Performance During Methanol Steam Reforming in Comparison with Autothermal Reforming Using CFD Analysis, International Journal of Hydrogen Energy, 41(20): 8745-8754 (2016).
[16] Ghasemzadeh K., Andalib E., Basile A., Modelling Study of Palladium Membrane Reactor Performance during Methan Steam Reforming Using CFD Method, Chemical Product and Process Modeling, 11(1): 17-21 (2016).
[17] Ghasemzadeh K., Zeynali R., Ahmadnejad F., Babalou A.A., Basile A., Investigation of Palladium Membrane Reactor Performance During Ethanol Steam Reforming Using CFD Method,  Chemical Product and Process Modeling, 11(1): 51-55 (2016).
[18] Khataee A.R., Kasiri M.B., Artificial Neural Networks Modeling of Contaminated Water Treatment Processes by Homogeneous and Heterogeneous Nanocatalysis, Journal of Molecular Catalysis A: Chemical, 331:86-100 (2010).
[19] Rostamizadeh M., Rezakazemi M., Shahidi K., Mohammadi T., Gas Permeation through
H2-Selective Mixed Matrix Membranes: Experimental and Neural Network Modeling
, International Journal of Hydrogen Energy, 38(2): 1128-1135 (2013).
[20] Rezakazemi M., Mohammadi T., Gas Sorption in H2-Selective Mixed Matrix Membranes: Experimental and Neural Network Modeling, International Journal of Hydrogen Energy, 38(32): 14035-14041 (2013).
[21] Farno E., Ghadimi A., Kasiri N., Mohammadi T., Separation of Heavy Gases from Light Gases Using Synthesized PDMS Nano-Composite Membranes: Experimental and Neural Network Modeling, Separation and Purification Technology81(3): 400-410 (2011).
[22] Rostamizadeh M., Hashemi Rizi S.M., Predicting Gas Flux in Silicalite-1 Zeolite Membrane Using Artificial Neural Networks, Journal of Membrane Science, 403: 146-151 (2012).
[23] Aghaeinejad-Meybodi A., Ghasemzadeh K., Babaluo A.A., Shafiei S., Letter to the Editor on “Approximate Solutions for Gas permeator Separating Binary Mixtures”[J. Membr. Sci. 66 (1992) 103–118], Journal of Membrane Science, 454:109-110 (2014).
[24] Krovvidi K.R., Kowali., Vemury S., Khan A., Approximate Solutions for Gas Permeators  Separation Binary Mixtures, Journal of Membrane Science, 66:103-118 (1992).
[25] Pan C.Y., Gas Separation by High-Flux, Asymmetric hollow-fiber membrane, AIChE Journal, 32(12):2020-2070 (1986).
[26] Sridhar S., Khan A.A., Simulation Studies for the Separation of Propylene and Propane by Ethylcellulose Membrane, Journal of Membrane Science, 159: 209-219 (1999).
[27] Kazemzadeh A., Bayati B., Kalantari N., Babaluo A.A, Tubular MFI Zeolite Membranes Made by In-Situ Crystallization, Iran. J. Chem. Chem. Eng. (IJCCE), 31(2): 37-44 (2012).
[28] Li G., Kikuchi E., Matsukata M., ZSM-5 Zeolite Membranes Prepared from a Clear Template-Free Solution, Microporous and Mesoporous Materials, 60: 225-235 (2003).