Modification of SAPO-34 Adsorbent for Separation of CO2 from Natural Gas at Low Pressure; Effects of Acidity, Ion Exchange and Si/Al Ratio

Document Type : Research Article

Authors

1 Department of Energy, Kermanshah University of Technology, Kermanshah, I.R. IRAN

2 Department of Petroleum and Chemical Engineering, Razi University, Kermanshah, I.R. IRAN

Abstract

Among the various processes for the separation of impurities from natural gas, adsorption by solid adsorbent because of the simplicity of the process, low cost and also capability to achieve the high purity gas, have been considered. The SAPO-34 adsorbent as a molecular sieve has pores the same as CO2 and larger than CH4, so this causes high CO2 separation from the natural gas. In this study, SAPO-34 has been modified by H3PO4 at various operating conditions in order to maximize removing of carbon dioxide from the natural gas. Modifications can change the Si/Al ratio of SAPO-34 that is leading to a change in the acidity of adsorbent via the ion exchange process. These changes have been analyzed by various techniques such as EDX, SEM, XRD, and BET. The effects of temperature and pressure on separation have been verified at 5, 20 and 35 °Ϲ and 3, 5 and 7 bar, respectively. The results indicated that by increasing pressure and decreasing temperature, the amount of adsorption is increased, but at very low temperatures and very high pressures, this trend was slightly reversed. Finally, by applying the design of experiments the temperature of 17.4 ºC and pressure of 4.6 bar represented the highest yield for removing CO2 from natural gas (95%).

Keywords

Main Subjects


[1] Strathmann H., Membrane Separation Processes: Current Relevance and Future OpportunitiesAIChE47: 1177-87 (2001).
[2] Bahadori A., "Natural Gas Processing: Technology and Engineering Design", Elsevier Science, 483-518 (2014).
[3] واشقانی فراهانی، ابراهیم؛ پاک سرشت، سعید؛ رشیدی، علی مراد، امکان سنجی استفاده از جذب سطحی برای جداسازی نیتروژن از 4CH، نشریه شیمی و مهندسی شیمی ایران، (2)32 : 35 تا 47(1381).
[4] Juergen Caro M.N., Zeolite Membranes - Recent Developments and ProgressMicroporous Mesoporous Mater., 115: 215–233 (2008).
[5] Arévalo-Hidalgo A.G., Riqiang Fu., Yasuyuki I., Hernández-Maldonado A.J., Separation of CO2 From Light Gas Mixtures Using Nanoporous Silicoaluminophosphate Sorbents: Effect of Multiple-Step Ion Exchange and Adsorption Mechanism via Computational Studies, Microporous Mesoporous Mater., 130: 142-153 (2010).
[6] Xu L., Liu Z., Du A., Wei Y., Sun Z., Synthesis, Characterization, and MTO Performance of MeAPSO-34 Molecular SievesSurf. Sci. Catal., 147: 445-450 (2004).
[7] Zhang L., Rivera-Ramos M. E., Hernández-Maldonado A. J., Location and Valence State of Strontium Cations on the Framework of a Carbon Dioxide Selective Porous SilicoaluminophosphateChem. Eng. J., 209: 356-361 (2012).
[9] Salmasi M., Fatemi S., Doroudian Rad M., Jadidi F., Study of Carbon Dioxide and Methane Equilibrium Adsorption on Silicoaluminophosphate-34 Zeotype and T- Type Zeolite as AdsorbentEnviron. Sci. Technol., 10: 1067-1074 (2013).
[10] Deroche I., Gaberova L., Maurin G., Llewellyn P., Castro M., Wright P., Adsorption of Carbon Dioxide in SAPO STA-7 and AlPO-18: Grand Canonical Monte Carlo Simulations and Microcalorimetry MeasurementsAdsorption14: 207-213 (2008).
[11] Cheung O., Liu Q., Bacsik Z., Hedin N., Silicoaluminophosphates as CO2 Sorbents, Microporous Mesoporous Mater., 156: 90-96 (2012).
[12] آشوبی، فرزاد؛ موسوی، سید عباس؛ روستا آزاد، رضا، طراحی و ساخت یک واحد آزمایشگاهی برای جداسازی H2S و CO2 از CH4 با استفاده از تماس دهنده غشایی، نشریه شیمی و مهندسی شیمی ایران، (1)33 : 21 تا 30 (1393).
[13] مختاری حسینی، زهرا بیگم؛ شنوائی زارع، تکتم؛ کمالی­فر، یونس، حذف CO2 از گاز دودکش کارخانه سیمان توسط کلینوپتیلولیت طبیعی منطقه سبزوار، نشریه شیمی و مهندسی شیمی ایران، (2)34 : 63 تا 72 (1394)
[14] رضایی، فاطمه؛ صدرعاملی، سید مجتبی؛ توفیقی داریان، جعفر؛ مفرحی، مسعود، جداسازی مخلوط گازی CO2 و N2 با روش جذب سطحی با تناوب فشار- خلأ، نشریه شیمی و مهندسی شیمی ایران، (3)32 : 39 تا 45 (1392).
[15] پرویزی مریدانی، سجاد؛ موسوی، سید عباس؛ رحیمی، محمد؛ صادقی، مسعود، مدل‌سازی حذف گاز CO2 از گاز طبیعی حاوی H2S به کمک تماس دهنده‌های غشایی، نشریه علوم و مهندسی جداسازی، (2)8 : 21 تا 29 (1395).
[16] بیات، یاسر؛ بابالو، علی اکبر، علیزاده، رضا، ساخت لایه‌های نازک غشایی کوپلیمر پلی‌آمید - پلی‌اتر روی پایه‌های نانوکامپوزیتی سرامیکی و ارزیابی عملکرد آنها در جداسازی CO2 از N2 و CH4، نشریه علوم و مهندسی جداسازی، (1)4 : 69 تا 75 (1391).
 [17] Zhang L., Fu R., Mathivathanan L., Hernández-Maldonado A. J., Strontium(II) Chabazite-Type Silicoaluminophosphate Prepared via Microwave Synthesis and Partial Detemplation: A Superior CO2 AdsorbentMicroporous Mesoporous Mater., 147: 274-280 (2012).
[18] Ashraf Talesh S.S., Fatemi S., Hashemi S. J., Emrani P., Comparative Study of Carbon Dioxide and Methane Adsorption by Synthesized Fine Particles of SAPO-34 Molecular SieveIran. J. Chem. Chem. Eng. (IJCCE)29(3): 37-45 (2010).
[19] Zhu J., Cui Y., Nawaz Z., Wang Y., Wei F., In situ Synthesis of SAPO-34 Zeolites in Kaolin Microspheres for a Fluidized Methanol or Dimethyl Ether to Olefins ProcessChin. J. Chem. Eng.18: 979-987 (2010).
[20] Zeinali Varzaneh A., Tawfighi J., Mohamadalizadeh A., Comparative Study of Naphtha Cracking over SAPO-34 and HZSM-5: Effects of Cerium and Zirconium on the Catalytic PerformanceJ. Anal. Appl. Pyrolysis107: 165-173 (2014).
[22] Leng Chew T., Ahmad A. L., Bhatia S., Ba-SAPO-34 Membrane Synthesized from Microwave Heating and Its performance for CO2/CH4 Gas SeparationChem. Eng. J., 171: 1053-59 (2011).
[23] Lok B.M., Messina C.A., Patton R.L., Gajek R.T., Cannan T.R., Flanigen E.M.,Silicoaluminophosphate Molecular Sieves: Another New Class of Microporous Crystalline Inorganic SolidsJ. Am. Chem. Soc.106: 6092–6093(1984).
[24] Munthali M. W., Elsheikh M. A., Johan E., Matsue N., Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of ZeolitesMolecules19: 20468-81 (2014).
[25] Martin C., Tosi-Pellenq N., Patarin J., Coulomb J.P.,Sorption Properties of AlPO4-5 and SAPO-5 Zeolite-like MaterialsLangmuir14 (7): 1774–8 (1998).
[26] Ma J., Wu X., Weng D., Ma Y., Optimizing the Crystallinity and Acidity of H-SAPO-34 by 2 Fluoride for Synthesizing Cu/SAPO-34 NH3-SCR CatalystJ. Environ. Sci., 41: 244-251 (2015).
[27] Wang J., Yu T., Wang X., Qi G., Xue J., Shen M., Li W., The Influence of Silicon on the Catalytic Properties of Cu/SAPO-34 for NOx Reduction by Ammonia-SCRAppl. Catal., B,  127: 137-147 (2012).
[28] Wang j., Fan D., Yu T., Wang J., Hao T., Hu X., Shen M., Li W., Improvement of Low-Temperature Hydrothermal Stability of Cu/SAPO-34 Catalysts by Cu2+ SpeciesJ. Catal322: 84-90 (2015).
[29] Sedighi M., Towfighi J., Mohamadalizadeh A., Effect of Phosphorus and Water Contents on Physico-Chemical Properties of SAPO-34 Molecular SievePowder Technol., 259: 81-86 (2014).