Influence of Particle Size on the Biological Settling Behavior of Hematite Using Bacillus licheniformis

Document Type : Research Article


Department of Mining Engineering, Isfahan University of Technology, Isfahan, I.R. IRAN


In the present study, the flocculation of fine-grained hematite was investigated in two size ranges using the bacterial cells and metabolic products of Bacillus licheniformis. More than 99% settling for fine and ultrafine particles was observed in the best condition by the bacterial cells in pH 5, and 7, respectively. Settling of fine and ultrafine particles improved by 33% and 18% compared to the control tests. Moreover, adsorption studies revealed that the settling behavior of each size, the fraction was pH-dependent and could be justified very well by the flocculant adsorption. In fact, although for fine hematite, maximum biosurfactant adhesion occurred in an acidic environment, for ultrafine hematite, neutral and basic pH caused the highest flocculant adsorption.


Main Subjects

[1] Somasundaran P., Das K.K., Yu X., Selective Flocculation, Current Opinion in Colloid & Interface Science, 1(4): 530-534 (1996).
[2] Haselhuhn H.J., Dispersant Adsorption and Effects on Settling behavior of Iron Ore, Minerals & Metallurgical Processing, 30(3): 188-189 (2013).
[3] Weissenborn P.K., Warren L.J., Dunn J.G., Optimisation of Selective Flocculation of Ultrafine Iron Ore, International Journal of Mineral Processing, 42(3): 191-213 (1994).
[4] Haselhuhn H.J., “The Dispersion and Selective Flocculation of Hematite Ore”, Michigan Technological University (2015).
[5] Shih I.L., Van Y.T., Yeh L.C., Lin H.G., Chang Y.N., Production of a Bbiopolymer Flocculant from Bacillus Licheniformis and Its Flocculation Properties. Bioresource Technology, 78(3): 267-272 (2001).
[6] Zakeri A., Pazouki M., Vossoughi M., Use of Response Surface Methodology Analysis for Xanthan Biopolymer Production by Xanthomonas campestris: Focus on Agitation Rate, Carbon Source, and Temperature. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 36(1): 173-183 (2017).
[7] Misra M., Chen S., Smith R.W., Raichur A.M., Mycobacterium Phlei as a Flotation Collector for Hematite. Minerals and Metallurgical Processing, 10: 170-170 (1993).
[8] Schneider I.A.H., Misra M., Smith R.W., Bioflocculation of Hematite Suspensions with Products from Yeast Cell Rupture, AsiaPacific Journal of Chemical Engineering, 2(4): 248-252 (1994).
[9] Deo N., Natarajan K.A., Studies on interaction of Paenibacillus polymyxa with Iron Ore Minerals in Relation to Beneficiation. International Journal of Mineral Processing, 55(1): 41-60 (1998).
[10] Yang H., Tang Q., Wang C., Zhang J., Flocculation and Flotation Response of Rhodococcus Erythropolis to Pure Minerals in Hematite Ores, Minerals Engineering, 45: 67-72 (2013).
[11] De Mesquita L., Lins F., Torem M., Interaction of a Hydrophobic Bacterium Strain in a Hematite–Quartz Flotation System, International Journal of Mineral Processing, 71(1-4): 31-44 (2003).
[12] Natarajan K.A., Production and Characterization of Bioflocculants for Mineral Processing Applications, International Journal of Mineral Processing, 137: 15-25 (2015).
[13] Poorni S., Natarajan K.A., Flocculation behaviour of Hematite–Kaolinite Suspensions in Presence of Extracellular Bacterial Proteins and Polysaccharides, Colloids and Surfaces B: Biointerfaces, 114: 186-192 (2014).
[14] امانی، حسین؛ شاهمیرزایی، فرزانه، بهینه سازی تولید سورفکتین با استفاده از باکتری Bacillus subtilis NLIM 0110  درون راکتور زیستی لرزان. نشریه شیمی و مهندسی شیمی ایران، 68: 103 تا 109 (1392).
[15] Vijayalakshmi S.P., Raichur A.M., The utility of Bacillus Subtilis as a Bioflocculant for Fine Coal, Colloids and Surfaces B: Biointerfaces, 29(4): 265-275 (2003).
[16] Karthiga K., Natarajan K.A., Production and Characterization of Bioflocculants for Mineral Processing Applications, International Journal of Mineral Processing, 137: 15-25 (2015).
[17] Manivasagan P., Kang K.H., Kim D.G., Kim S.K., Production of Polysaccharide-Based Bioflocculant for the Synthesis of Silver Nanoparticles by Streptomyces sp, International Journal of Biological Macromolecules, 77: 159-167 (2015).
[19] Dubois M., Gilles K.A., Hamilton J.K., Rebers P.T., Smith F., Colorimetric Method for Determination of Sugars and Related Substances, Analytical Chemistry, 28(3): 350-356 (1956).
[20] Kemppainen K., Suopajärvi T., Laitinen O., Ämmälä A., Liimatainen H., Illikainen M., Flocculation of Fine Hematite and Quartz Suspensions with Anionic Cellulose Nanofibers, Chemical Engineering Science, 148: 256-266 (2016).
[21] Kosmulski M., “Surface Charging and Points of Zero Charge”. Vol. 145, CRC Press (2009).
[22] Kosmulski M., Compilation of PZC and IEP of Sparingly Soluble Metal Oxides and Hydroxides from Literature, Advances in Colloid and Interface Science, 152(1-2): 14-25 (2009).
[23] Omoike, A., Chorover J., Adsorption to Goethite of Extracellular Polymeric Substances from Bacillus Subtilis, Geochimica et Cosmochimica Acta, 70(4): 827-838 (2006).