Preparation of Styrene Derivatives Using the Inverse Coupling of Boronic Acids with Dimethylacetylene Dicarboxylate in the Presence of Catalysed Bis (Dibenzylidine Acetone) Palladium

Document Type : Research Article


1 Department of Chemistry, Buinzahra Branch, Islamic Azad University, Buinzahra, I.R. IRAN

2 Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan, I.R. IRAN


Styrene derivatives are important structural units in the chemistry of organic compounds. Since the nuclear attack on a triple bond is not carried out, the use of palladium catalyst is considered a suitable route for the activation of these compounds. In this study, a new pathway for the preparation of styrene derivatives using alcohols As a source of active vinyl and boronic acids, it has been reported as a source of activated Ariel. Optimum reaction conditions include the catalytic system of tris (diphenzilindenson) palladium / 1 and 4- bis (phenylphosphine) butane as a ligand and a mixture of dimethyl acetamide/water as a solvent. The study of variation reacted that the presence of fatal electron and electron components in the structure of boronic acids ariel is very well suited to the reaction conditions. In addition, the selectivity test reacts that the reaction product is predominantly cysteine.


Main Subjects

[1] خانلری ، طیبه؛ تهیه پلیمر حمایت کننده پالادیوم، بر پایه پلی ­وینیل الکل و استفاده از آن در واکنش هک، نشریه شیمی و مهندسی شیمی ایران، شماره‌ی (2) 34: 25 تا 40، (1394).
[2] امینی، مجتبی؛ بهرامی حیدرلو، دینا؛ باقرزاده، مجتبی؛ نانوذره­های پالادیم تثبیت شده بر روی بستر روی اکسید به­عنوان کاتالیستی مؤثر در واکنش جفت شدن هک، نشریه شیمی و مهندسی شیمی ایران، (2)35: 21تا 29 (1395).
[3] Marset X., Khoshnood A., Sotorríos L., Gómez-Bengoa E., Alonso D. A., Ramón D. J., Deep Eutectic Solvent Compatible Metallic Catalysts: Cationic Pyridiniophosphine Ligands in Palladium Catalyzed Cross‐Coupling Reactions, Chem. Cat. Chem., 9: 1269-1275 (2017).
[4] Sandfort F., O'Neill M.J., Cornella J., Wimmer L., Baran P.S., Alkyl−(Hetero)Aryl Bond Formation via Decarboxylative Cross-Coupling: A Systematic Analysis, Angew. Chem. Int. Ed., 56: 3319-3323 (2017).
[5] Brambilla M., Tredwell M., Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling of Secondary α-(Trifluoromethyl)Benzyl Tosylates, Angew. Chem. Int. Ed., 56: 11981-11985 (2017).
[6] Serra J., Parella T., Ribas X., Au(III)-aryl Intermediates in Oxidant-Free C–N and C–O Cross-Coupling Catalysis, Chem. Sci.,8: 946-952 (2017).
[7] Myers A.G., Tanaka D., Mannion M.R., Development of a Decarboxylative Palladation Reaction and Its Use in a Heck-type Olefination of Arene Carboxylates, J. Am. Chem. Soc.,124:11250-11251 (2002)
[9] Kan J., Huang S., Lin J., Zhang M., Su W., Silver‐Catalyzed Arylation of (Hetero)Arenes by Oxidative Decarboxylation of Aromatic Carboxylic Acids, Angew. Chem. Int. Ed., 54:2199-2203 (2015)
[11] Gooßen L.J., Lange P.P., Rodríguez N., Linder C., Low‐Temperature Ag/Pd‐Catalyzed Decarboxylative Cross‐Coupling of Aryl Triflates with Aromatic Carboxylate Salts, Chem. Eur. J., 16:3906-3909 (2010)
[12] Gooßen L.J., Deng G., Levy L.M., Synthesis of Biaryls Via Catalytic Decarboxylative Coupling, Science.,313:662-664 (2006)
[14] Heck R.F., Mechanism of Arylation and Carbomethoxylation of Olefins with Organopalladium Compounds, J. Am. Chem. Soc., 91: 6707-6714 (1969)
[15] Traficante C.I., Fagundez C., Serra G.L., Mata E.G., Delpiccolo C.M.L.,Chemoselective and Sequential Palladium-Catalyzed Couplings for the Generation of Stilbene Libraries via Immobilized Substrates, ACS Comb. Sci.,18:225-229 (2016)
[17] Gordillo A., Ortuño M.A., López-Mardomingo C., Lledós A., Ujaque G., de Jesús E., Mechanistic Studies on the Pd-Catalyzed Vinylation of Aryl Halides with Vinylalkoxysilanes in Water: The Effect of the Solvent and NaOH Promoter, J. Am. Chem. Soc., 135:13749-13763 (2013)
[18] Huang L., Biafora A., Zhang G., Bragoni V., Gooßen L.J., Regioselective C−H Hydroarylation of Internal Alkynes with Arenecarboxylates: Carboxylates as Deciduous Directing Groups, Angew. Chem. Int. Ed., 55:6933-6937 (2016)
[20] Yamamoto Y., Synthesis of Heterocycles Via Transition-Metal-Catalyzed Hydroarylation of Alkynes, Chem. Soc. Rev.,43:1575-1600 (2014)
[21] ولی پور، سپیده؛ کمیلی، سمانه؛ تخت روانچی، مریم؛ طائب، عباس؛ ارزیابی کارایی مدل سینتیکی گودینز در پیش‌بینی غیرفعال‌شدن کاتالیست هیدروژناسیون انتخابی استیلن، نشریه شیمی و مهندسی شیمی ایران، شماره‌ی (1)35: 83 تا 89، (1395).
[22] Shen R., Chen T., Zhao Y., Qiu R., Zhou Y., Yin S., Wang X., Goto M., Han L.B., Facile Regio- and Stereoselective Hydrometalation of Alkynes with a Combination of Carboxylic Acids and Group 10 Transition Metal Complexes: Selective Hydrogenation of Alkynes with Formic Acid, J. Am. Chem. Soc.,133:17037-17044 (2011)
[23]. Jana R., Tunge J.A., A Homogeneous, Recyclable Polymer Support for Rh(I)-Catalyzed C–C Bond Formation, J. Org. Chem.,76:8376-8385 (2011)
[24] Estes D.P., Norton J.R., Jockusch S., Sattler W., Mechanisms by Which Alkynes React with CpCr(CO)3H. Application to Radical Cyclization, J. Am. Chem. Soc.,134:15512-15518(2012)
[25] Ghazanfarpour-Darjani M., Babapour-Kooshalshahi M., Mousavi-Safavi S.M., Akbari-Neyestani J., Khalaj M., Copper-Catalyzed Domino Addition–Cyclization Reaction between Terminal Alkynes, Carbon Disulfide, and Oxiranes, Synlett.,27: 259-261 (2016).
[26] Khalaj M., Ghazanfarpour-Darjani M., Barat-Seftejani F., Nouri A., Novel Catalytic Three-Component Reaction between a Terminal Alkyne, Sulfonyl Azide, and O-Methyl Oxime, Synlett., 28: 1445-1448 (2017).
[27] Khalaj M., Ghazanfarpour-Darjani M., Talei Bavil Olyai M.R., Faraji Shamami S., Palladium Nanoparticles as Reusable Catalyst for the Synthesis of N-Aryl Sulfonamides Under Mild Reaction Conditions, Journal of Sulfur Chemistry., 37: 211-222 (2016).
[28] Khalaj M., Ghazanfarpour-Darjani M., Cross-Coupling Reaction of Aryl Diazonium Salts with Azodicarboxylate Using FeCl2, RSC Adv., 5: 80698-80701 (2015)