Characterization and Study of Prepared CuO Nanoparticles by Thermal Decomposition of New Cu(II) Complexes with Chloro Tetradentate Ligands Containing Functional Azo-Azomethine Groups

Document Type : Research Article

Authors

Department of Chemistry, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, I.R. IRAN

Abstract

Different methods have been reported for the preparation of CuO nanoparticles with different sizes and shapes in the literature. One of them that has recently been gained considerable attention because of the high pure and perfect structure products, is the pyrolysis of copper complexes containing organic ligands. So, in this work, at first, two new precursors, CuL1 and CuL2were synthesized by the reaction of Cu(CH3COO)2.H2O with azo-azomethine derivatives, H2L1 and H2L2,  and characterized with several techniques. The results indicated that the ligands are bound to the Cu(II) ion center as anionic and tetradentate with N and O donor atoms. In the next step, CuO nanoparticles were synthesized from pyrolysis of the mentioned precursors at 550 ºC for 24h. The synthesized nanoparticles were characterized and studied with several techniques such as FT-IR spectroscopy, powder X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). The investigation of diffraction patterns indicated the single-phase CuO system with a monoclinic structure for nanoparticles. Also, the comparison of diffraction patterns showed that the CuO nanoparticles obtained from CuL2 have higher crystallinity. Finally, SEM images showed that the shape of CuO nanoparticles obtained from CuL1 is spherical, while the shape of CuO nanoparticles obtained from CuL2 is cubic. In addition, CuO nanoparticles obtained from CuL2 have a smaller size. These nanoparticles show a high tendency for aggregation.

Keywords

Main Subjects


[2] Tranquada J M., Sternlieb B J., Axe J D., Nakamura Y., Uchida S., Evidence for Stripe Correlations of Spins and Holes in Copper Oxide Superconductors,  Nature, 375: 561-563 (1995).
[4] ZareiAhmady A., Keshavarz M., Kardani M., Mohtasham N., CuO Nanoparticles as an Efficient Catalyst for the Synthesis of Flavanones,Oriental Journal of Chemistry, 31: 1841-1846 (2015).
[5] مینائی، شهاب؛ حقیقی، محمد؛ عحمین، حسین؛ عبدالهی فر، مظفر؛ تاثیرافزودن آلومینا در عملکرد نانو کاتالیست Cuo-ZnO-CeO2 برای استفاده در ریفورمینگ متانول در حضور بخار آب، نشریه شیمی و مهندسی شیمی ایران، (4)36: 125 تا 136 (1396).
[6] حسینی، سید قربان؛ ایومن، اسماعیل؛ بررسی فعالیت فوتوکاتالیست نانوذره های CuO در تجزیه گرمایی آمونیوم پرکلرات، نشریه شیمی و مهندسی شیمی ایران، (2)34: 13 تا 23 (1394).
[7] Kaneshiro J., Gaillard N., Rocheleau R., Miller E., Advances in Copper-Chalcopyrite Thin Films for Solar Energy Conversion, Solar Energy Materials and Solar Cells, 94: 12-16 (2010).
[8] Kidowaki H., Oku T., Akiyama T., Suzuki A., Jeyadevan B., Cuya J., Fabrication and Characterization of CuO-Based Solar Cells, Journal of Materials Science Research, 1: 139-143 (2012).
[9] Zhang Y., He. X., Li J., Zhang H., Gao X., Gas-Sensing Properties of Hollow and Hierarchical Copper Oxide Microspheres, Sensors and Actuators B: Chemical, 128: 293-298 (2007).
[10] Bohr R H., Chun S Y., Dau C W., Tan J T., Sung J., Field emission Studies of Amorphous Carbon Depos- Ited on Copper Nanowires Grown by Cathodic Arc Plasma Deposition, New Carbon Mater, 24: 97-101 (2009).
[11] Kaur M., Muthe K P., Despande S K, Choudhury S, Singh J B., Verma N., Gupta S K., Yakhmi J V., Growth and Branching of CuO Nanowires by Thermal Oxidation of Copper, Journal of Crystal Growth, 289: 670-675 (2006).
[12] Yamukyan M H., Manukyan K V., Kharatyan S L., Copper Oxide Reduction by Combined Reducers Under the Combustion Mode, Chemical Engineering Journal, 137: 636-642 (2008).
[13] Phiwdang K., Suphankij S., Mekprasart W., Pecharapa W., Synthesis of CuO Nanoparticles by Precipitation Method Using Different Precursors, Energy Procedia, 34: 740-745 (2013).
[14] Narongdet W., Piyanut C., Naratip V., Wisanu P., Sonochemical Synthesis and Characterization of Copper Oxide Nanoparticles, Energy Procedia, 29: 404-409 (2011).
[15] Zhu J., Li D., Chen H., Yang X., Lu L., Wang X., Highly Dispersed CuO Nanoparticles Prepared by a Novel Quick-Precipitation Method, Materials Letters, 58: 3324-3327 (2004).
[17] Adhikary J., Das B., Chatterjee S., K.Dash S., Chattopadhyay S., Roy S., Chen J W., Chattopadhyay T., Ag/CuO Nanoparticles Prepared from a Novel Trinuclear Compound [Cu(Imdz)4(Ag(CN)2)2] (Imdz = imidazole) by a Pyrolysis Display Excellent Antimicrobial ActivityJournal of Molecular Structure, 1113: 9-17 (2016).
[19] Shahsavani E., Feizi N., Dehno Khalaji A., Copper Oxide Nanoparticles Prepared by Solid State Thermal Decomposition: Synthesis and Characterization, Journal of Ultrafine Grained and Nanostructured Materials, 49: 48-50 (2016).
[20]Dehno Khalaji A., Das D., Preparation of CuO Nanoparticles By Thermal Decomposition of Double-Helical Dinuclear Copper (II) Schiff-Base Complexes, Journal of Ultrafine Grained and Nanostructured Materials, 48(2): 93-99 (2015).
[21] Dinçalp H., Toker F., Durucasu I., Avcıbaşi N., Icli S., New thiophene-Based Azo Ligands Containing Azo Methine Group in the Main Chain for the Determination of Copper(II) IonsDyes and Pigments, 75: 11-24 (2007).
[24] Liu J N., Wu B W., Zhang B., Liu Y., Synthesis and Characterization of Metal Complexes of Cu(II), Ni(II), Zn(II), Co(II), Mn(II) and Cd(II) with Tetradentate Schiff Bases, Turkish Journal of Chemistry, 30: 41–48 (2006).
[25] More M S., Pawal S B., Lolage S R., Chavan S S., Syntheses, Structural Characterization, Luminescence and Optical Studies of Ni(II) And Zn(II) Complexes Containing Salophen Ligand, Journal Of Molecular Structure,1128: 419-427 (2017).
[26] Galen H., Hennrich G., Mendoza J D., Prados P., Synthesis and Photoisomerization of Azocalixarenes with Dendritic Structures, European Journal of Organic Chemistry, 1249-1257 (2010).
[28] Dong Y., Kim T H., Kim H J., Lee M H., Lee S Y., Mahajan R K., Kim H., Kim J S., Spectroscopic and Electrochemical Studies of Two Distal Diethyl Ester Azocalix[4]arene DerivativesJournal of  Electroanalytical Chemistry, 628:119-124 (2009).
[29] Asha Radhakrishnan A., Baskaran Beena B., Structural and Optical Absorption Analysis of CuO Nanoparticles, Indian Journal of Advances in Chemical Science, 2: 158-161(2014).
[30] Iniyavan P., Balaji G L., Sarveswari S., Vijayakumar V., CuO Nanoparticles: Synthesis and Application as an Efficient Reusable Catalyst for the Preparation of Xanthene Substituted 1, 2, 3-Triazoles Via Click Chemistry, Tetrahedron Letters, 56: 5002-5009 (2015).
[31] Gopiraman M., Ganesh Babu S., Khatri Z., Kai W., Kim. Y A., Endo M., Karvembu R., Kim I S., An Efficient, Reusable Copper-Oxide/Carbon-Nanotube Catalyst for N-arylation of Imidazole, Carbon, 62: 135–148 (2013).